January  2007, 18(1): 15-38. doi: 10.3934/dcds.2007.18.15

Well-posedness and long-time behavior for a class of doubly nonlinear equations

1. 

Università degli Studi di Pavia, Dipartimento di Matematica "F. Casorati", Via Ferrata 1, 27100 Pavia

2. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, D-10117 Berlin, Germany

3. 

Istituto di Matematica Applicata e Tecnologie Informatiche – CNR, Via Ferrata 1, 27100 Pavia, Italy

Received  May 2006 Revised  December 2006 Published  February 2007

This paper addresses a doubly nonlinear parabolic inclusion of the form

$\mathcal A (u_t)+\mathcal B (u)$ ∋ f.

Existence of a solution is proved under suitable monotonicity, coercivity, and structure assumptions on the operators $\mathcal A $ and $\mathcal B$, which in particular are both supposed to be subdifferentials of functionals on $L^2(\Omega)$. Since unbounded operators $\mathcal A $ are included in the analysis, this theory partly extends Colli & Visintin's work [24]. Moreover, under additional hypotheses on $\mathcal B$, uniqueness of the solution is proved. Finally, a characterization of $\omega$-limit sets of solutions is given, and we investigate the convergence of trajectories to limit points.

Citation: Giulio Schimperna, Antonio Segatti, Ulisse Stefanelli. Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 15-38. doi: 10.3934/dcds.2007.18.15
[1]

Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51

[2]

Alain Haraux. Some applications of the Łojasiewicz gradient inequality. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2417-2427. doi: 10.3934/cpaa.2012.11.2417

[3]

Changjing Zhuge, Xiaojuan Sun, Jinzhi Lei. On positive solutions and the Omega limit set for a class of delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2487-2503. doi: 10.3934/dcdsb.2013.18.2487

[4]

Kongzhi Li, Xiaoping Xue. The Łojasiewicz inequality for free energy functionals on a graph. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022066

[5]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[6]

Qianqian Han, Bo Deng, Xiao-Song Yang. The existence of $ \omega $-limit set for a modified Nosé-Hoover oscillator. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022043

[7]

Simona Fornaro, Maria Sosio, Vincenzo Vespri. Harnack type inequalities for some doubly nonlinear singular parabolic equations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5909-5926. doi: 10.3934/dcds.2015.35.5909

[8]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations and Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[9]

Frank Jochmann. A singular limit in a nonlinear problem arising in electromagnetism. Communications on Pure and Applied Analysis, 2011, 10 (2) : 541-559. doi: 10.3934/cpaa.2011.10.541

[10]

Carlos Arnoldo Morales, M. J. Pacifico. Lyapunov stability of $\omega$-limit sets. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 671-674. doi: 10.3934/dcds.2002.8.671

[11]

Shun Uchida. Solvability of doubly nonlinear parabolic equation with p-laplacian. Evolution Equations and Control Theory, 2022, 11 (3) : 975-1000. doi: 10.3934/eect.2021033

[12]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A singular limit problem for the Ibragimov-Shabat equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 661-673. doi: 10.3934/dcdss.2016020

[13]

Liangwei Wang, Jingxue Yin, Chunhua Jin. $\omega$-limit sets for porous medium equation with initial data in some weighted spaces. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 223-236. doi: 10.3934/dcdsb.2013.18.223

[14]

Pascal Auscher, Sylvie Monniaux, Pierre Portal. The maximal regularity operator on tent spaces. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2213-2219. doi: 10.3934/cpaa.2012.11.2213

[15]

Luca Lussardi, Stefano Marini, Marco Veneroni. Stochastic homogenization of maximal monotone relations and applications. Networks and Heterogeneous Media, 2018, 13 (1) : 27-45. doi: 10.3934/nhm.2018002

[16]

Zhuchun Li, Yi Liu, Xiaoping Xue. Convergence and stability of generalized gradient systems by Łojasiewicz inequality with application in continuum Kuramoto model. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 345-367. doi: 10.3934/dcds.2019014

[17]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[18]

David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298

[19]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108

[20]

Andrew D. Barwell, Chris Good, Piotr Oprocha, Brian E. Raines. Characterizations of $\omega$-limit sets in topologically hyperbolic systems. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1819-1833. doi: 10.3934/dcds.2013.33.1819

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (21)

[Back to Top]