-
Previous Article
The attractors for weakly damped non-autonomous hyperbolic equations with a new class of external forces
- DCDS Home
- This Issue
-
Next Article
Well-posedness and long-time behavior for a class of doubly nonlinear equations
Examples of Anosov Lie algebras
1. | Department of Mathematics, The University of Western Ontario, London, Ontario N6A 5B7, Canada |
2. | FaMAF and CIEM, Universidad Nacional de Córdoba, Haya de la Torre s/n, 5000 Córdoba, Argentina |
[1] |
Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121 |
[2] |
João P. Almeida, Albert M. Fisher, Alberto Adrego Pinto, David A. Rand. Anosov diffeomorphisms. Conference Publications, 2013, 2013 (special) : 837-845. doi: 10.3934/proc.2013.2013.837 |
[3] |
Viorel Niţică. Stable transitivity for extensions of hyperbolic systems by semidirect products of compact and nilpotent Lie groups. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 1197-1204. doi: 10.3934/dcds.2011.29.1197 |
[4] |
Kengo Matsumoto. $ C^* $-algebras associated with asymptotic equivalence relations defined by hyperbolic toral automorphisms. Electronic Research Archive, , () : -. doi: 10.3934/era.2021006 |
[5] |
G. Mashevitzky, B. Plotkin and E. Plotkin. Automorphisms of categories of free algebras of varieties. Electronic Research Announcements, 2002, 8: 1-10. |
[6] |
Peigen Cao, Fang Li, Siyang Liu, Jie Pan. A conjecture on cluster automorphisms of cluster algebras. Electronic Research Archive, 2019, 27: 1-6. doi: 10.3934/era.2019006 |
[7] |
Mark Pollicott. Ergodicity of stable manifolds for nilpotent extensions of Anosov flows. Discrete & Continuous Dynamical Systems, 2002, 8 (3) : 599-604. doi: 10.3934/dcds.2002.8.599 |
[8] |
Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29 (3) : 2457-2473. doi: 10.3934/era.2020124 |
[9] |
Dominic Veconi. Equilibrium states of almost Anosov diffeomorphisms. Discrete & Continuous Dynamical Systems, 2020, 40 (2) : 767-780. doi: 10.3934/dcds.2020061 |
[10] |
Maria Carvalho. First homoclinic tangencies in the boundary of Anosov diffeomorphisms. Discrete & Continuous Dynamical Systems, 1998, 4 (4) : 765-782. doi: 10.3934/dcds.1998.4.765 |
[11] |
Matthieu Porte. Linear response for Dirac observables of Anosov diffeomorphisms. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 1799-1819. doi: 10.3934/dcds.2019078 |
[12] |
Christian Bonatti, Nancy Guelman. Axiom A diffeomorphisms derived from Anosov flows. Journal of Modern Dynamics, 2010, 4 (1) : 1-63. doi: 10.3934/jmd.2010.4.1 |
[13] |
Luca Capogna. Optimal regularity for quasilinear equations in stratified nilpotent Lie groups and applications. Electronic Research Announcements, 1996, 2: 60-68. |
[14] |
Robert L. Griess Jr., Ching Hung Lam. Groups of Lie type, vertex algebras, and modular moonshine. Electronic Research Announcements, 2014, 21: 167-176. doi: 10.3934/era.2014.21.167 |
[15] |
Lennard F. Bakker, Pedro Martins Rodrigues. A profinite group invariant for hyperbolic toral automorphisms. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 1965-1976. doi: 10.3934/dcds.2012.32.1965 |
[16] |
Zemer Kosloff. On manifolds admitting stable type Ⅲ$_{\textbf1}$ Anosov diffeomorphisms. Journal of Modern Dynamics, 2018, 13: 251-270. doi: 10.3934/jmd.2018020 |
[17] |
Andrey Gogolev, Misha Guysinsky. $C^1$-differentiable conjugacy of Anosov diffeomorphisms on three dimensional torus. Discrete & Continuous Dynamical Systems, 2008, 22 (1&2) : 183-200. doi: 10.3934/dcds.2008.22.183 |
[18] |
Andrey Gogolev. Smooth conjugacy of Anosov diffeomorphisms on higher-dimensional tori. Journal of Modern Dynamics, 2008, 2 (4) : 645-700. doi: 10.3934/jmd.2008.2.645 |
[19] |
Rafael Potrie. Partially hyperbolic diffeomorphisms with a trapping property. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 5037-5054. doi: 10.3934/dcds.2015.35.5037 |
[20] |
Lorenzo J. Díaz, Todd Fisher. Symbolic extensions and partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1419-1441. doi: 10.3934/dcds.2011.29.1419 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]