March  2007, 19(1): 1-35. doi: 10.3934/dcds.2007.19.1

Finite-time blow-down in the evolution of point masses by planar logarithmic diffusion


Departamento de Matemáticas and ICMAT. Universidad Autónoma de Madrid, Cantoblanco. 28049 Madrid, Spain

Received  August 2006 Revised  February 2007 Published  June 2007

We are interested in a remarkable property of certain nonlinear diffusion equations, which we call blow-down or delayed regularization. The following happens: a solution of one of these equations is shown to exist in some generalized sense, and it is also shown to be non-smooth for some time $ 0 < t < t_1$, after which it becomes smooth and still nontrivial. We use the logarithmic diffusion equation to examine an example of occurrence of this phenomenon starting from data that contain Dirac deltas, which persist for a finite time. The interpretation of the results in terms of diffusion is also unusual: if the process starts with one or several point masses surrounded by a continuous distribution, then the masses decay into the medium over a finite period of time. The study of the phenomenon implies consideration of a new concept of measure solution which seems natural for these diffusion processes.
Citation: Juan Luis Vázquez. Finite-time blow-down in the evolution of point masses by planar logarithmic diffusion. Discrete & Continuous Dynamical Systems, 2007, 19 (1) : 1-35. doi: 10.3934/dcds.2007.19.1

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021


Nejib Mahmoudi. Single-point blow-up for a multi-component reaction-diffusion system. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 209-230. doi: 10.3934/dcds.2018010


Michael Herty, Axel Klar, Sébastien Motsch, Ferdinand Olawsky. A smooth model for fiber lay-down processes and its diffusion approximations. Kinetic & Related Models, 2009, 2 (3) : 489-502. doi: 10.3934/krm.2009.2.489


Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404


Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881


Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042


Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051


Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016


Wenjun Liu, Jiangyong Yu, Gang Li. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4337-4366. doi: 10.3934/dcdss.2021121


Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete & Continuous Dynamical Systems, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055


Simona Fornaro, Stefano Lisini, Giuseppe Savaré, Giuseppe Toscani. Measure valued solutions of sub-linear diffusion equations with a drift term. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1675-1707. doi: 10.3934/dcds.2012.32.1675


Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264


Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2607-2623. doi: 10.3934/dcdss.2021032


Fang Li, Kimie Nakashima, Wei-Ming Ni. Stability from the point of view of diffusion, relaxation and spatial inhomogeneity. Discrete & Continuous Dynamical Systems, 2008, 20 (2) : 259-274. doi: 10.3934/dcds.2008.20.259


Monica Marras, Stella Vernier Piro. Blow-up phenomena in reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2012, 32 (11) : 4001-4014. doi: 10.3934/dcds.2012.32.4001


Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182


Abd-semii Oluwatosin-Enitan Owolabi, Timilehin Opeyemi Alakoya, Adeolu Taiwo, Oluwatosin Temitope Mewomo. A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021004


Jiao Chen, Weike Wang. The point-wise estimates for the solution of damped wave equation with nonlinear convection in multi-dimensional space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 307-330. doi: 10.3934/cpaa.2014.13.307


Mohammad Eslamian, Ahmad Kamandi. A novel algorithm for approximating common solution of a system of monotone inclusion problems and common fixed point problem. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021210


Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

2020 Impact Factor: 1.392


  • PDF downloads (96)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]