-
Previous Article
Extremal free energy in a simple mean field theory for a coupled Barotropic fluid - rotating sphere system
- DCDS Home
- This Issue
-
Next Article
Existence of nontrivial solutions for some elliptic equations with supercritical nonlinearity in exterior domains
Elliptic-parabolic variational inequalities with time-dependent constraints
1. | Department of Mathematics, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan |
2. | Department of Mathematical Science, Common Subject Division, Muroran Institute of Technology, 27-1 Mizumoto-chō, Muroran |
[1] |
Noriaki Yamazaki. Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems. Conference Publications, 2005, 2005 (Special) : 920-929. doi: 10.3934/proc.2005.2005.920 |
[2] |
Masahiro Kubo, Noriaki Yamazaki. Periodic stability of elliptic-parabolic variational inequalities with time-dependent boundary double obstacles. Conference Publications, 2007, 2007 (Special) : 614-623. doi: 10.3934/proc.2007.2007.614 |
[3] |
Cédric Galusinski, Mazen Saad. A nonlinear degenerate system modelling water-gas flows in porous media. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 281-308. doi: 10.3934/dcdsb.2008.9.281 |
[4] |
Youcef Amirat, Laurent Chupin, Rachid Touzani. Weak solutions to the equations of stationary magnetohydrodynamic flows in porous media. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2445-2464. doi: 10.3934/cpaa.2014.13.2445 |
[5] |
Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761 |
[6] |
Wolfgang Walter. Nonlinear parabolic differential equations and inequalities. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 451-468. doi: 10.3934/dcds.2002.8.451 |
[7] |
Gabriele Grillo, Matteo Muratori, Maria Michaela Porzio. Porous media equations with two weights: Smoothing and decay properties of energy solutions via Poincaré inequalities. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3599-3640. doi: 10.3934/dcds.2013.33.3599 |
[8] |
Leda Bucciantini, Angiolo Farina, Antonio Fasano. Flows in porous media with erosion of the solid matrix. Networks and Heterogeneous Media, 2010, 5 (1) : 63-95. doi: 10.3934/nhm.2010.5.63 |
[9] |
Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks and Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025 |
[10] |
Ioana Ciotir. Stochastic porous media equations with divergence Itô noise. Evolution Equations and Control Theory, 2020, 9 (2) : 375-398. doi: 10.3934/eect.2020010 |
[11] |
Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265 |
[12] |
Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043 |
[13] |
Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks and Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007 |
[14] |
Simona Fornaro, Maria Sosio, Vincenzo Vespri. Harnack type inequalities for some doubly nonlinear singular parabolic equations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5909-5926. doi: 10.3934/dcds.2015.35.5909 |
[15] |
José A. Carrillo, Jean Dolbeault, Ivan Gentil, Ansgar Jüngel. Entropy-energy inequalities and improved convergence rates for nonlinear parabolic equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1027-1050. doi: 10.3934/dcdsb.2006.6.1027 |
[16] |
J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176 |
[17] |
Yusuke Murase, Risei Kano, Nobuyuki Kenmochi. Elliptic Quasi-variational inequalities and applications. Conference Publications, 2009, 2009 (Special) : 583-591. doi: 10.3934/proc.2009.2009.583 |
[18] |
Mattia Turra. Existence and extinction in finite time for Stratonovich gradient noise porous media equations. Evolution Equations and Control Theory, 2019, 8 (4) : 867-882. doi: 10.3934/eect.2019042 |
[19] |
Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023 |
[20] |
Vyacheslav Maksimov. The method of extremal shift in control problems for evolution variational inequalities under disturbances. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021048 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]