# American Institute of Mathematical Sciences

May  2007, 19(2): 411-418. doi: 10.3934/dcds.2007.19.411

## N-vortex equilibrium theory

 1 Department of Aerospace & Mechanical Engineering and Department of Mathematics, University of Southern California, Los Angeles, CA 90089-1191

Received  August 2006 Revised  February 2007 Published  July 2007

The problem of finding and classifying all relative equilibrium configurations of $N$-point vortices in the plane is first described as a classical variational principle and then formulated as a problem in linear algebra. Given a configuration of $N$ points in the plane, one must understand the structure of the $N(N-1)/2 \times N$ configuration matrix $A$ obtained by requiring that all interparticle distances remain fixed in time. If the determinant of the square, symmetric $N \times N$ covariance matrix $A^T A$ is zero, there is a non-trivial nullspace of $A$ and a basis set for this nullspace can be used to determine all vortex strengths $\vec{\Gamma} \in R^N$ for which the configuration remains rigid. Optimal basis sets are obtained by using the singular value decomposition of $A$ which allows one to categorize exact equilibria, approximate equilibria, and the distance between different equilibria in the appropriate vector space, as characterized by the Frobenius norm.
Citation: P.K. Newton. N-vortex equilibrium theory. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 411-418. doi: 10.3934/dcds.2007.19.411
 [1] Antonio Giorgilli. Unstable equilibria of Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 855-871. doi: 10.3934/dcds.2001.7.855 [2] James Montaldi. Bifurcations of relative equilibria near zero momentum in Hamiltonian systems with spherical symmetry. Journal of Geometric Mechanics, 2014, 6 (2) : 237-260. doi: 10.3934/jgm.2014.6.237 [3] Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439 [4] David Rojas, Pedro J. Torres. Bifurcation of relative equilibria generated by a circular vortex path in a circular domain. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 749-760. doi: 10.3934/dcdsb.2019265 [5] Lyudmila Grigoryeva, Juan-Pablo Ortega, Stanislav S. Zub. Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies. Journal of Geometric Mechanics, 2014, 6 (3) : 373-415. doi: 10.3934/jgm.2014.6.373 [6] Miguel Rodríguez-Olmos. Continuous singularities in hamiltonian relative equilibria with abelian momentum isotropy. Journal of Geometric Mechanics, 2020, 12 (3) : 525-540. doi: 10.3934/jgm.2020019 [7] Vikas S. Krishnamurthy. Liouville links and chains on the plane and associated stationary point vortex equilibria. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2383-2397. doi: 10.3934/cpaa.2022076 [8] Florian Rupp, Jürgen Scheurle. Classification of a class of relative equilibria in three body coulomb systems. Conference Publications, 2011, 2011 (Special) : 1254-1262. doi: 10.3934/proc.2011.2011.1254 [9] Daniela Cárcamo-Díaz, Jesús F. Palacián, Claudio Vidal, Patricia Yanguas. Nonlinear stability of elliptic equilibria in hamiltonian systems with exponential time estimates. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5183-5208. doi: 10.3934/dcds.2021073 [10] D. J. W. Simpson. On the stability of boundary equilibria in Filippov systems. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3093-3111. doi: 10.3934/cpaa.2021097 [11] Alain Albouy, Holger R. Dullin. Relative equilibria of the 3-body problem in $\mathbb{R}^4$. Journal of Geometric Mechanics, 2020, 12 (3) : 323-341. doi: 10.3934/jgm.2020012 [12] Marshall Hampton, Anders Nedergaard Jensen. Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations. Journal of Geometric Mechanics, 2015, 7 (1) : 35-42. doi: 10.3934/jgm.2015.7.35 [13] Laura Scrimali. Mixed behavior network equilibria and quasi-variational inequalities. Journal of Industrial and Management Optimization, 2009, 5 (2) : 363-379. doi: 10.3934/jimo.2009.5.363 [14] Carlos Hervés-Beloso, Emma Moreno-García. Market games and walrasian equilibria. Journal of Dynamics and Games, 2020, 7 (1) : 65-77. doi: 10.3934/jdg.2020004 [15] Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics and Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537 [16] Alessia Marigo. Equilibria for data networks. Networks and Heterogeneous Media, 2007, 2 (3) : 497-528. doi: 10.3934/nhm.2007.2.497 [17] Florin Diacu, Shuqiang Zhu. Almost all 3-body relative equilibria on $\mathbb S^2$ and $\mathbb H^2$ are inclined. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1131-1143. doi: 10.3934/dcdss.2020067 [18] PaweŁ Hitczenko, Georgi S. Medvedev. Stability of equilibria of randomly perturbed maps. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 369-381. doi: 10.3934/dcdsb.2017017 [19] Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics and Games, 2021, 8 (1) : 69-99. doi: 10.3934/jdg.2021002 [20] Jean-Bernard Baillon, Guillaume Carlier. From discrete to continuous Wardrop equilibria. Networks and Heterogeneous Media, 2012, 7 (2) : 219-241. doi: 10.3934/nhm.2012.7.219

2021 Impact Factor: 1.588