
Previous Article
New maximum principles for fully nonlinear ODEs of second order
 DCDS Home
 This Issue

Next Article
The geometry of mesoscopic phase transition interfaces
Rates of convergence towards the boundary of a selfsimilar set
1.  Department of Mathematics, University of St. Andrews, St. Andrews, Fife KY16 9SS, United Kingdom 
[1] 
Krzysztof Barański. Hausdorff dimension of selfaffine limit sets with an invariant direction. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 10151023. doi: 10.3934/dcds.2008.21.1015 
[2] 
Razvan Gabriel Iagar, Ana Isabel Muñoz, Ariel Sánchez. Selfsimilar blowup patterns for a reactiondiffusion equation with weighted reaction in general dimension. Communications on Pure and Applied Analysis, 2022, 21 (3) : 891925. doi: 10.3934/cpaa.2022003 
[3] 
Weronika Biedrzycka, Marta TyranKamińska. Selfsimilar solutions of fragmentation equations revisited. Discrete and Continuous Dynamical Systems  B, 2018, 23 (1) : 1327. doi: 10.3934/dcdsb.2018002 
[4] 
Marco Cannone, Grzegorz Karch. On selfsimilar solutions to the homogeneous Boltzmann equation. Kinetic and Related Models, 2013, 6 (4) : 801808. doi: 10.3934/krm.2013.6.801 
[5] 
Rostislav Grigorchuk, Volodymyr Nekrashevych. Selfsimilar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323370. doi: 10.3934/jmd.2007.1.323 
[6] 
Christoph Bandt, Helena PeÑa. Polynomial approximation of selfsimilar measures and the spectrum of the transfer operator. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 46114623. doi: 10.3934/dcds.2017198 
[7] 
Anna Chiara Lai, Paola Loreti. Selfsimilar control systems and applications to zygodactyl bird's foot. Networks and Heterogeneous Media, 2015, 10 (2) : 401419. doi: 10.3934/nhm.2015.10.401 
[8] 
Kin Ming Hui. Existence of selfsimilar solutions of the inverse mean curvature flow. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 863880. doi: 10.3934/dcds.2019036 
[9] 
D. G. Aronson. Selfsimilar focusing in porous media: An explicit calculation. Discrete and Continuous Dynamical Systems  B, 2012, 17 (6) : 16851691. doi: 10.3934/dcdsb.2012.17.1685 
[10] 
G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically selfsimilar dynamics. Conference Publications, 2005, 2005 (Special) : 131141. doi: 10.3934/proc.2005.2005.131 
[11] 
Qiaolin He. Numerical simulation and selfsimilar analysis of singular solutions of Prandtl equations. Discrete and Continuous Dynamical Systems  B, 2010, 13 (1) : 101116. doi: 10.3934/dcdsb.2010.13.101 
[12] 
Bendong Lou. Selfsimilar solutions in a sector for a quasilinear parabolic equation. Networks and Heterogeneous Media, 2012, 7 (4) : 857879. doi: 10.3934/nhm.2012.7.857 
[13] 
F. Berezovskaya, G. Karev. Bifurcations of selfsimilar solutions of the FokkerPlank equations. Conference Publications, 2005, 2005 (Special) : 9199. doi: 10.3934/proc.2005.2005.91 
[14] 
Shota Sato, Eiji Yanagida. Singular backward selfsimilar solutions of a semilinear parabolic equation. Discrete and Continuous Dynamical Systems  S, 2011, 4 (4) : 897906. doi: 10.3934/dcdss.2011.4.897 
[15] 
Alberto Bressan, Wen Shen. A posteriori error estimates for selfsimilar solutions to the Euler equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 113130. doi: 10.3934/dcds.2020168 
[16] 
Shota Sato, Eiji Yanagida. Forward selfsimilar solution with a moving singularity for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 313331. doi: 10.3934/dcds.2010.26.313 
[17] 
Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to selfsimilar solutions for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 703716. doi: 10.3934/dcds.2008.21.703 
[18] 
Hyungjin Huh. Selfsimilar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations and Control Theory, 2018, 7 (1) : 5360. doi: 10.3934/eect.2018003 
[19] 
Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114118. 
[20] 
Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 32933313. doi: 10.3934/dcds.2015.35.3293 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]