-
Previous Article
Weighted low-regularity solutions of the KP-I initial-value problem
- DCDS Home
- This Issue
- Next Article
Refined asymptotics around solitons for gKdV equations
1. | Université de Versailles Saint-Quentin-en-Yvelines, Mathématiques, 45, av. des Etats-Unis, 78035 Versailles cedex, France |
2. | Université de Cergy-Pontoise and IHES, Laboratoire de mathématiques, UMR CNRS 8088, 2, av. Adolphe Chauvin, 95302 Cergy-Pontoise cedex, France |
$\partial_t u + \partial_x (\partial_x^2 u + f(u))=0, (t,x)\in \mathbb{R}\times \mathbb{R}$(1)
with $C^3$ nonlinearity $f$.
Under an explicit condition on $f$ and $c>0$,
there exists a solution of (1) in the energy space $H^1$ of the type $u(t,x)=Q_c(x-x_0-ct)$, called soliton.
 
In [11],
[13], it was proved that for $f(u)=u^p$, $p=2,3,4$,
the family of solitons
is asymptotically stable in some local sense in $H^1$, i.e.
if $u(t)$ is close to $Q_{c}$,
then $u(t,.+\rho(t))$ locally converges in the energy space
to some $Q_{c_+}$ as $t\to +\infty$, for some $c^+$~$c$ and some function $\rho(t)$ such that $\rho'(t)$~$c^+$.
Then,
in [9] and [14], these results were extended with shorter proofs
under general assumptions on $f$.
 
The first objective of this paper is to give more information about the function
$\rho(t)$.
In the case $f(u)=u^p$, $p=2,3,4$ and under the additional assumption $x_+ u\in L^2(\mathbb{R})$, we prove
that the function $\rho(t)-c^+ t$ has a finite limit as $t\to +\infty$.
 
Second, we prove stability and asymptotic stability
results for two solitons for a general nonlinearity $f(u)$, in the case
where the ratio of the speeds of the two solitons is small.
[1] |
Benjamin Dodson, Cristian Gavrus. Instability of the soliton for the focusing, mass-critical generalized KdV equation. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1767-1799. doi: 10.3934/dcds.2021171 |
[2] |
Annie Millet, Svetlana Roudenko. Generalized KdV equation subject to a stochastic perturbation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1177-1198. doi: 10.3934/dcdsb.2018147 |
[3] |
Rowan Killip, Soonsik Kwon, Shuanglin Shao, Monica Visan. On the mass-critical generalized KdV equation. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 191-221. doi: 10.3934/dcds.2012.32.191 |
[4] |
S. Raynor, G. Staffilani. Low regularity stability of solitons for the KDV equation. Communications on Pure and Applied Analysis, 2003, 2 (3) : 277-296. doi: 10.3934/cpaa.2003.2.277 |
[5] |
Aiyong Chen, Chi Zhang, Wentao Huang. Limit speed of traveling wave solutions for the perturbed generalized KdV equation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022048 |
[6] |
Jundong Wang, Lijun Zhang, Elena Shchepakina, Vladimir Sobolev. Solitary waves of singularly perturbed generalized KdV equation with high order nonlinearity. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022124 |
[7] |
Esha Chatterjee, Sk. Sarif Hassan. On the asymptotic character of a generalized rational difference equation. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1707-1718. doi: 10.3934/dcds.2018070 |
[8] |
Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401 |
[9] |
María-Santos Bruzón, Elena Recio, Tamara-María Garrido, Rafael de la Rosa. Lie symmetries, conservation laws and exact solutions of a generalized quasilinear KdV equation with degenerate dispersion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2691-2701. doi: 10.3934/dcdss.2020222 |
[10] |
Mamoru Okamoto. Asymptotic behavior of solutions to a higher-order KdV-type equation with critical nonlinearity. Evolution Equations and Control Theory, 2019, 8 (3) : 567-601. doi: 10.3934/eect.2019027 |
[11] |
José Manuel Palacios. Orbital and asymptotic stability of a train of peakons for the Novikov equation. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2475-2518. doi: 10.3934/dcds.2020372 |
[12] |
Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991 |
[13] |
Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063 |
[14] |
Denis Matignon, Christophe Prieur. Asymptotic stability of Webster-Lokshin equation. Mathematical Control and Related Fields, 2014, 4 (4) : 481-500. doi: 10.3934/mcrf.2014.4.481 |
[15] |
Juan-Ming Yuan, Jiahong Wu. The complex KdV equation with or without dissipation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 489-512. doi: 10.3934/dcdsb.2005.5.489 |
[16] |
Jungho Park. Bifurcation and stability of the generalized complex Ginzburg--Landau equation. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1237-1253. doi: 10.3934/cpaa.2008.7.1237 |
[17] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2021-2038. doi: 10.3934/cpaa.2021056 |
[18] |
Byungsoo Moon. Orbital stability of periodic peakons for the generalized modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4409-4437. doi: 10.3934/dcdss.2021123 |
[19] |
Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971 |
[20] |
Khaled El Dika. Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 583-622. doi: 10.3934/dcds.2005.13.583 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]