Advanced Search
Article Contents
Article Contents

Entropy sets, weakly mixing sets and entropy capacity

Abstract Related Papers Cited by
  • Entropy sets are defined both topologically and for a measure. The set of topological entropy sets is the union of the sets of entropy sets for all invariant measures. For a topological system $(X,T)$ and an invariant measure $\mu$ on $(X,T)$, let $H(X,T)$ (resp. $H^\mu(X,T)$) be the closure of the set of all entropy sets (resp. $\mu$- entropy sets) in the hyperspace $2^X$. It is shown that if $h_{\text{top}}(T)>0$ (resp. $h_\mu(T)>0$), the subsystem $(H(X,T),\hat{T})$ (resp. $(H^\mu(X,T),\hat{T}))$ of $(2^X,\hat{T})$ has an invariant measure with full support and infinite topological entropy.
        Weakly mixing sets and partial mixing of dynamical systems are introduced and characterized. It is proved that if $h_{\text{top}}(T)>0$ (resp. $h_\mu(T)>0$) the set of all weakly mixing entropy sets (resp. $\mu$-entropy sets) is a dense $G_\delta$ in $H(X,T)$ (resp. $H^\mu(X,T)$). A Devaney chaotic but not partly mixing system is constructed.
         Concerning entropy capacities, it is shown that when $\mu$ is ergodic with $h_\mu(T)>0$, the set of all weakly mixing $\mu$-entropy sets $E$ such that the Bowen entropy $h(E)\ge h_\mu(T)$ is residual in $H^\mu(X,T)$. When in addition $(X,T)$ is uniquely ergodic the set of all weakly mixing entropy sets $E$ with $h(E)=h_{\text{top}}(T)$ is residual in $H(X,T)$.
    Mathematics Subject Classification: Primary: 37B05; Secondary: 54H20.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(277) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint