October  2008, 20(4): 877-888. doi: 10.3934/dcds.2008.20.877

Optimal Lyapunov inequalities for disfocality and Neumann boundary conditions using $L^p$ norms

1. 

Departamento de Análisis Matemático, Universidad de Granada, 18071, Granada, Spain, Spain

Received  January 2007 Revised  August 2007 Published  January 2008

Motivated by the applications to nonlinear resonant boundary value problems with Neumann boundary conditions, this paper is devoted to the study of $L^{p}$ Lyapunov-type inequalities ($1 \leq p \leq \infty$) with mixed boundary conditions. We carry out a complete treatment of the problem for any constant $p \geq 1.$ Our main result is derived from a detailed analysis of the relationship between the existence of nontrivial solutions of these two different boundary problems.
Citation: Antonio Cañada, Salvador Villegas. Optimal Lyapunov inequalities for disfocality and Neumann boundary conditions using $L^p$ norms. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 877-888. doi: 10.3934/dcds.2008.20.877
[1]

Shengda Zeng, Vicenţiu D. Rădulescu, Patrick Winkert. Double phase obstacle problems with multivalued convection and mixed boundary value conditions. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022109

[2]

M.J. Lopez-Herrero. The existence of weak solutions for a general class of mixed boundary value problems. Conference Publications, 2011, 2011 (Special) : 1015-1024. doi: 10.3934/proc.2011.2011.1015

[3]

J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 177-186. doi: 10.3934/dcdss.2008.1.177

[4]

Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489

[5]

Davide Guidetti. On hyperbolic mixed problems with dynamic and Wentzell boundary conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3461-3471. doi: 10.3934/dcdss.2020239

[6]

Shu Luan. On the existence of optimal control for semilinear elliptic equations with nonlinear neumann boundary conditions. Mathematical Control and Related Fields, 2017, 7 (3) : 493-506. doi: 10.3934/mcrf.2017018

[7]

Santiago Cano-Casanova. Coercivity of elliptic mixed boundary value problems in annulus of $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 3819-3839. doi: 10.3934/dcds.2012.32.3819

[8]

Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets. Conference Publications, 2007, 2007 (Special) : 181-190. doi: 10.3934/proc.2007.2007.181

[9]

B. Abdellaoui, E. Colorado, I. Peral. Existence and nonexistence results for a class of parabolic equations with mixed boundary conditions. Communications on Pure and Applied Analysis, 2006, 5 (1) : 29-54. doi: 10.3934/cpaa.2006.5.29

[10]

P. De Maesschalck. Ackerberg-O'Malley resonance in boundary value problems with a turning point of any order. Communications on Pure and Applied Analysis, 2007, 6 (2) : 311-333. doi: 10.3934/cpaa.2007.6.311

[11]

Paul Eloe, Jaganmohan Jonnalagadda. Quasilinearization applied to boundary value problems at resonance for Riemann-Liouville fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2719-2734. doi: 10.3934/dcdss.2020220

[12]

Monica Motta, Caterina Sartori. Uniqueness of solutions for second order Bellman-Isaacs equations with mixed boundary conditions. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 739-765. doi: 10.3934/dcds.2008.20.739

[13]

Mingxin Wang. Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 415-421. doi: 10.3934/dcdsb.2018179

[14]

Mingxin Wang. Erratum: Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete and Continuous Dynamical Systems - B, 2022, 27 (9) : 5179-5180. doi: 10.3934/dcdsb.2021269

[15]

R. Kannan, S. Seikkala. Existence of solutions to some Phi-Laplacian boundary value problems. Conference Publications, 2001, 2001 (Special) : 211-217. doi: 10.3934/proc.2001.2001.211

[16]

Patricia Bauman, Daniel Phillips, Jinhae Park. Existence of solutions to boundary value problems for smectic liquid crystals. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 243-257. doi: 10.3934/dcdss.2015.8.243

[17]

Antonio Iannizzotto, Nikolaos S. Papageorgiou. Existence and multiplicity results for resonant fractional boundary value problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 511-532. doi: 10.3934/dcdss.2018028

[18]

John R. Graef, Shapour Heidarkhani, Lingju Kong. Existence of nontrivial solutions to systems of multi-point boundary value problems. Conference Publications, 2013, 2013 (special) : 273-281. doi: 10.3934/proc.2013.2013.273

[19]

Lingju Kong, Qingkai Kong. Existence of nodal solutions of multi-point boundary value problems. Conference Publications, 2009, 2009 (Special) : 457-465. doi: 10.3934/proc.2009.2009.457

[20]

Monica Motta, Caterina Sartori. Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 513-535. doi: 10.3934/dcds.2008.21.513

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]