# American Institute of Mathematical Sciences

November  2008, 21(4): 1129-1157. doi: 10.3934/dcds.2008.21.1129

## Decay and local eventual positivity for biharmonic parabolic equations

 1 Dipartimento di Matematica dell’Università di Milano-Bicocca, Via Cozzi 53, Milano, 20125, Italy 2 Dipartimento di Matematica Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano 3 Fakultät für Mathematik, Otto-von-Guericke-Universität, Postfach 4120, 39016 Magdeburg

Received  August 2007 Revised  December 2007 Published  May 2008

We study existence and positivity properties for solutions of Cauchy problems for both linear and semilinear parabolic equations with the biharmonic operator as elliptic principal part. The self-similar kernel of the parabolic operator $\partial_t+\Delta^2$ is a sign changing function and the solution of the evolution problem with a positive initial datum may display almost instantaneous change of sign. We determine conditions on the initial datum for which the corresponding solution exhibits some kind of positivity behaviour. We prove eventual local positivity properties both in the linear and semilinear case. At the same time, we show that negativity of the solution may occur also for arbitrarily large given time, provided the initial datum is suitably constructed.
Citation: Alberto Ferrero, Filippo Gazzola, Hans-Christoph Grunau. Decay and local eventual positivity for biharmonic parabolic equations. Discrete & Continuous Dynamical Systems, 2008, 21 (4) : 1129-1157. doi: 10.3934/dcds.2008.21.1129
 [1] Alfonso Castro, Jorge Cossio, Carlos Vélez. Existence and qualitative properties of solutions for nonlinear Dirichlet problems. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 123-140. doi: 10.3934/dcds.2013.33.123 [2] Alina Gleska, Małgorzata Migda. Qualitative properties of solutions of higher order difference equations with deviating arguments. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 239-252. doi: 10.3934/dcdsb.2018016 [3] John Baxley, Mary E. Cunningham, M. Kathryn McKinnon. Higher order boundary value problems with multiple solutions: examples and techniques. Conference Publications, 2005, 2005 (Special) : 84-90. doi: 10.3934/proc.2005.2005.84 [4] Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851-860. doi: 10.3934/proc.2015.0851 [5] Lucio Boccardo, Maria Michaela Porzio. Some degenerate parabolic problems: Existence and decay properties. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 617-629. doi: 10.3934/dcdss.2014.7.617 [6] Wenxiong Chen, Congming Li, Biao Ou. Qualitative properties of solutions for an integral equation. Discrete & Continuous Dynamical Systems, 2005, 12 (2) : 347-354. doi: 10.3934/dcds.2005.12.347 [7] Grey Ballard, John Baxley, Nisrine Libbus. Qualitative behavior and computation of multiple solutions of nonlinear boundary value problems. Communications on Pure & Applied Analysis, 2006, 5 (2) : 251-259. doi: 10.3934/cpaa.2006.5.251 [8] Muhammad Aslam Noor, Khalida Inayat Noor. Properties of higher order preinvex functions. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 431-441. doi: 10.3934/naco.2020035 [9] Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990 [10] Carlos Durán, Diego Otero. The projective symplectic geometry of higher order variational problems: Minimality conditions. Journal of Geometric Mechanics, 2016, 8 (3) : 305-322. doi: 10.3934/jgm.2016009 [11] Feliz Minhós, A. I. Santos. Higher order two-point boundary value problems with asymmetric growth. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 127-137. doi: 10.3934/dcdss.2008.1.127 [12] Leonardo Colombo, David Martín de Diego. Higher-order variational problems on lie groups and optimal control applications. Journal of Geometric Mechanics, 2014, 6 (4) : 451-478. doi: 10.3934/jgm.2014.6.451 [13] Mu-Ming Zhang, Tian-Yuan Xu, Jing-Xue Yin. Controllability properties of degenerate pseudo-parabolic boundary control problems. Mathematical Control & Related Fields, 2020, 10 (1) : 157-169. doi: 10.3934/mcrf.2019034 [14] Maria Assunta Pozio, Fabio Punzo, Alberto Tesei. Uniqueness and nonuniqueness of solutions to parabolic problems with singular coefficients. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 891-916. doi: 10.3934/dcds.2011.30.891 [15] Maria Assunta Pozio, Alberto Tesei. On the uniqueness of bounded solutions to singular parabolic problems. Discrete & Continuous Dynamical Systems, 2005, 13 (1) : 117-137. doi: 10.3934/dcds.2005.13.117 [16] Pavel Gurevich. Periodic solutions of parabolic problems with hysteresis on the boundary. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 1041-1083. doi: 10.3934/dcds.2011.29.1041 [17] Kazuhiro Ishige, Paolo Salani. On a new kind of convexity for solutions of parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 851-864. doi: 10.3934/dcdss.2011.4.851 [18] Shu-Zhi Song, Shang-Jie Chen, Chun-Lei Tang. Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6453-6473. doi: 10.3934/dcds.2016078 [19] Aleksandra Orpel. A note on the existence and properties of evanescent solutions for nonlinear elliptic problems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2631-2639. doi: 10.3934/dcdsb.2014.19.2631 [20] Guolin Yu. Topological properties of Henig globally efficient solutions of set-valued problems. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 309-316. doi: 10.3934/naco.2014.4.309

2020 Impact Factor: 1.392