
Previous Article
Existence of radial solutions for an elliptic problem involving exponential nonlinearities
 DCDS Home
 This Issue

Next Article
Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves
Superposition of selfdual functionals in nonhomogeneous boundary value problems and differential systems
1.  Department of Mathematics, The University of British Columbia, Vancouver BC Canada V6T 1Z2 
[1] 
Fei Guo, BaoFeng Feng, Hongjun Gao, Yue Liu. On the initialvalue problem to the DegasperisProcesi equation with linear dispersion. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 12691290. doi: 10.3934/dcds.2010.26.1269 
[2] 
Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems and Imaging, 2010, 4 (1) : 19. doi: 10.3934/ipi.2010.4.1 
[3] 
Aimin Huang, Roger Temam. The linear hyperbolic initial and boundary value problems in a domain with corners. Discrete and Continuous Dynamical Systems  B, 2014, 19 (6) : 16271665. doi: 10.3934/dcdsb.2014.19.1627 
[4] 
J. Colliander, A. D. Ionescu, C. E. Kenig, Gigliola Staffilani. Weighted lowregularity solutions of the KPI initialvalue problem. Discrete and Continuous Dynamical Systems, 2008, 20 (2) : 219258. doi: 10.3934/dcds.2008.20.219 
[5] 
Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 431444. doi: 10.3934/dcds.1998.4.431 
[6] 
Colin J. Cotter, Darryl D. Holm. Geodesic boundary value problems with symmetry. Journal of Geometric Mechanics, 2010, 2 (1) : 5168. doi: 10.3934/jgm.2010.2.51 
[7] 
Leo G. Rebholz, Dehua Wang, Zhian Wang, Camille Zerfas, Kun Zhao. Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multidimensions. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 37893838. doi: 10.3934/dcds.2019154 
[8] 
Elena Rossi. Wellposedness of general 1D initial boundary value problems for scalar balance laws. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 35773608. doi: 10.3934/dcds.2019147 
[9] 
V. A. Dougalis, D. E. Mitsotakis, J.C. Saut. On initialboundary value problems for a Boussinesq system of BBMBBM type in a plane domain. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 11911204. doi: 10.3934/dcds.2009.23.1191 
[10] 
ShouFu Tian. Initialboundary value problems for the coupled modified Kortewegde Vries equation on the interval. Communications on Pure and Applied Analysis, 2018, 17 (3) : 923957. doi: 10.3934/cpaa.2018046 
[11] 
Runzhang Xu, Mingyou Zhang, Shaohua Chen, Yanbing Yang, Jihong Shen. The initialboundary value problems for a class of sixth order nonlinear wave equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 56315649. doi: 10.3934/dcds.2017244 
[12] 
Rusuo Ye, Yi Zhang. Initialboundary value problems for the twocomponent complex modified Kortewegde Vries equation on the interval. Discrete and Continuous Dynamical Systems  S, 2022 doi: 10.3934/dcdss.2022111 
[13] 
Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initialboundary value problem. Conference Publications, 2007, 2007 (Special) : 212220. doi: 10.3934/proc.2007.2007.212 
[14] 
Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesqtype equation. Conference Publications, 2013, 2013 (special) : 709717. doi: 10.3934/proc.2013.2013.709 
[15] 
Jun Zhou. Initial boundary value problem for a inhomogeneous pseudoparabolic equation. Electronic Research Archive, 2020, 28 (1) : 6790. doi: 10.3934/era.2020005 
[16] 
Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 319328. doi: 10.3934/cpaa.2004.3.319 
[17] 
Xianpeng Hu, Dehua Wang. The initialboundary value problem for the compressible viscoelastic flows. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 917934. doi: 10.3934/dcds.2015.35.917 
[18] 
JongShenq Guo, Masahiko Shimojo. Blowing up at zero points of potential for an initial boundary value problem. Communications on Pure and Applied Analysis, 2011, 10 (1) : 161177. doi: 10.3934/cpaa.2011.10.161 
[19] 
Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations and Control Theory, 2022, 11 (3) : 635648. doi: 10.3934/eect.2021019 
[20] 
Zhiyuan Li, Xinchi Huang, Masahiro Yamamoto. Initialboundary value problems for multiterm timefractional diffusion equations with $ x $dependent coefficients. Evolution Equations and Control Theory, 2020, 9 (1) : 153179. doi: 10.3934/eect.2020001 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]