-
Previous Article
Renormalization of diophantine skew flows, with applications to the reducibility problem
- DCDS Home
- This Issue
-
Next Article
Non--autonomous and random attractors for delay random semilinear equations without uniqueness
Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity
1. | Departamento de Fisica Aplicada I, Escuela Universitaria Politénica, C/ Virgen de Africa, 7, University of Sevilla, 41011 Sevilla, Spain |
2. | Maxwell Institute and Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom |
3. | Department of Mathematics, University of the Aegean, Karlovassi 83200, Samos, Greece |
[1] |
Tai-Chia Lin, Tsung-Fang Wu. Multiple positive solutions of saturable nonlinear Schrödinger equations with intensity functions. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2165-2187. doi: 10.3934/dcds.2020110 |
[2] |
Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066 |
[3] |
Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337 |
[4] |
D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563 |
[5] |
Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102 |
[6] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3027-3042. doi: 10.3934/dcdss.2021031 |
[7] |
Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure and Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831 |
[8] |
Jibin Li, Yan Zhou. Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3083-3097. doi: 10.3934/dcdss.2020113 |
[9] |
Shalva Amiranashvili, Raimondas Čiegis, Mindaugas Radziunas. Numerical methods for a class of generalized nonlinear Schrödinger equations. Kinetic and Related Models, 2015, 8 (2) : 215-234. doi: 10.3934/krm.2015.8.215 |
[10] |
Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83 |
[11] |
Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971 |
[12] |
Michal Fečkan, Vassilis M. Rothos. Travelling waves of forced discrete nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1129-1145. doi: 10.3934/dcdss.2011.4.1129 |
[13] |
Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations and Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016 |
[14] |
Nakao Hayashi, Tohru Ozawa. Schrödinger equations with nonlinearity of integral type. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 475-484. doi: 10.3934/dcds.1995.1.475 |
[15] |
Tsukasa Iwabuchi, Kota Uriya. Ill-posedness for the quadratic nonlinear Schrödinger equation with nonlinearity $|u|^2$. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1395-1405. doi: 10.3934/cpaa.2015.14.1395 |
[16] |
Takeshi Wada. A remark on local well-posedness for nonlinear Schrödinger equations with power nonlinearity-an alternative approach. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1359-1374. doi: 10.3934/cpaa.2019066 |
[17] |
Jaeyoung Byeon, Louis Jeanjean. Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 255-269. doi: 10.3934/dcds.2007.19.255 |
[18] |
Yinbin Deng, Yi Li, Xiujuan Yan. Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2487-2508. doi: 10.3934/cpaa.2015.14.2487 |
[19] |
Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104 |
[20] |
Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]