• Previous Article
    Estimates of the topological entropy from below for continuous self-maps on some compact manifolds
  • DCDS Home
  • This Issue
  • Next Article
    Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity
June  2008, 21(2): 477-500. doi: 10.3934/dcds.2008.21.477

Renormalization of diophantine skew flows, with applications to the reducibility problem

1. 

Department of Mathematics, The University of Texas at Austin, Austin, TX 78712

2. 

Departamento de Matemática ISEG, Universidade Técnica de Lisboa, Rua do Quelhas 6, 1200-781 Lisboa, Portugal

Received  June 2007 Revised  December 2007 Published  March 2008

We introduce a renormalization group framework for the study of quasiperiodic skew flows on Lie groups of real or complex $n\times n$ matrices, for arbitrary Diophantine frequency vectors in $R^{d}$ and dimensions $d,n$. In cases where the Lie algebra component of the vector field is small, it is shown that there exists an analytic manifold of reducible skew systems, for each Diophantine frequency vector. More general near-linear flows are mapped to this case by increasing the dimension of the torus. This strategy is applied for the group of unimodular $2\times 2$ matrices, where the stable manifold is identified with the set of skew systems having a fixed fibered rotation number. Our results apply to vector fields of class Cγ, with $\gamma$ depending on the number of independent frequencies, and on the Diophantine exponent.
Citation: Hans Koch, João Lopes Dias. Renormalization of diophantine skew flows, with applications to the reducibility problem. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 477-500. doi: 10.3934/dcds.2008.21.477
[1]

Saša Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 261-283. doi: 10.3934/dcds.2011.29.261

[2]

João Lopes Dias. Brjuno condition and renormalization for Poincaré flows. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 641-656. doi: 10.3934/dcds.2006.15.641

[3]

Saša Kocić, João Lopes Dias. Reducibility of quasi-periodically forced circle flows. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5325-5345. doi: 10.3934/dcds.2020229

[4]

Sze-Bi Hsu, Bernold Fiedler, Hsiu-Hau Lin. Classification of potential flows under renormalization group transformation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 437-446. doi: 10.3934/dcdsb.2016.21.437

[5]

Hans Koch. On the renormalization of Hamiltonian flows, and critical invariant tori. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 633-646. doi: 10.3934/dcds.2002.8.633

[6]

Denis G. Gaidashev. Renormalization of isoenergetically degenerate hamiltonian flows and associated bifurcations of invariant tori. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 63-102. doi: 10.3934/dcds.2005.13.63

[7]

P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883

[8]

C.P. Walkden. Stable ergodicity of skew products of one-dimensional hyperbolic flows. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 897-904. doi: 10.3934/dcds.1999.5.897

[9]

Bogdan Sasu, A. L. Sasu. Input-output conditions for the asymptotic behavior of linear skew-product flows and applications. Communications on Pure and Applied Analysis, 2006, 5 (3) : 551-569. doi: 10.3934/cpaa.2006.5.551

[10]

Dongfeng Zhang, Junxiang Xu, Xindong Xu. Reducibility of three dimensional skew symmetric system with Liouvillean basic frequencies. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2851-2877. doi: 10.3934/dcds.2018123

[11]

Alfonso Artigue. Rescaled expansivity and separating flows. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4433-4447. doi: 10.3934/dcds.2018193

[12]

Alfonso Artigue. Expansive flows of surfaces. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 505-525. doi: 10.3934/dcds.2013.33.505

[13]

Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure and Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201

[14]

Michael Cranston, Benjamin Gess, Michael Scheutzow. Weak synchronization for isotropic flows. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3003-3014. doi: 10.3934/dcdsb.2016084

[15]

Jinqiao Duan, Vincent J. Ervin, Daniel Schertzer. Dispersion in flows with obstacles and uncertainty. Conference Publications, 2001, 2001 (Special) : 131-136. doi: 10.3934/proc.2001.2001.131

[16]

Michel Benaim, Morris W. Hirsch. Chain recurrence in surface flows. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 1-16. doi: 10.3934/dcds.1995.1.1

[17]

Alexandre I. Danilenko, Mariusz Lemańczyk. Spectral multiplicities for ergodic flows. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4271-4289. doi: 10.3934/dcds.2013.33.4271

[18]

Kristian Bjerklöv, Russell Johnson. Minimal subsets of projective flows. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 493-516. doi: 10.3934/dcdsb.2008.9.493

[19]

R. H.W. Hoppe, William G. Litvinov. Problems on electrorheological fluid flows. Communications on Pure and Applied Analysis, 2004, 3 (4) : 809-848. doi: 10.3934/cpaa.2004.3.809

[20]

W. Wei, Yin Li, Zheng-An Yao. Decay of the compressible viscoelastic flows. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1603-1624. doi: 10.3934/cpaa.2016004

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]