-
Previous Article
Stability of standing waves for a nonlinear Schrödinger equation wdelta potentialith a repulsive Dirac
- DCDS Home
- This Issue
-
Next Article
Supercritical elliptic problems from a perturbation viewpoint
On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity
1. | Università di Milano Bicocca, Dipartimento di Matematica e Applicazioni, Via Cozzi 53, 20125 Milano, Italy, Italy |
2. | Universitµa di Milano Bicocca, Dipartimento di Matematica e Applicazioni, Via Cozzi 53, 20125 Milano, Italy |
[1] |
Roberta Bosi, Jean Dolbeault, Maria J. Esteban. Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Communications on Pure and Applied Analysis, 2008, 7 (3) : 533-562. doi: 10.3934/cpaa.2008.7.533 |
[2] |
Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure and Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274 |
[3] |
Xinlin Cao, Yi-Hsuan Lin, Hongyu Liu. Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators. Inverse Problems and Imaging, 2019, 13 (1) : 197-210. doi: 10.3934/ipi.2019011 |
[4] |
Woocheol Choi, Yong-Cheol Kim. The Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators with certain potentials. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1993-2010. doi: 10.3934/cpaa.2018095 |
[5] |
Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033 |
[6] |
Juan Arratia, Denilson Pereira, Pedro Ubilla. Elliptic systems involving Schrödinger operators with vanishing potentials. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1369-1401. doi: 10.3934/dcds.2021156 |
[7] |
Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705 |
[8] |
Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827 |
[9] |
Jun Cao, Der-Chen Chang, Dachun Yang, Sibei Yang. Boundedness of second order Riesz transforms associated to Schrödinger operators on Musielak-Orlicz-Hardy spaces. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1435-1463. doi: 10.3934/cpaa.2014.13.1435 |
[10] |
Woocheol Choi, Yong-Cheol Kim. $L^p$ mapping properties for nonlocal Schrödinger operators with certain potentials. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5811-5834. doi: 10.3934/dcds.2018253 |
[11] |
Vagif S. Guliyev, Ramin V. Guliyev, Mehriban N. Omarova, Maria Alessandra Ragusa. Schrödinger type operators on local generalized Morrey spaces related to certain nonnegative potentials. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 671-690. doi: 10.3934/dcdsb.2019260 |
[12] |
Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121 |
[13] |
Noboru Okazawa, Tomomi Yokota. Quasi-$m$-accretivity of Schrödinger operators with singular first-order coefficients. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 1081-1090. doi: 10.3934/dcds.2008.22.1081 |
[14] |
Russell Johnson, Luca Zampogni. Some examples of generalized reflectionless Schrödinger potentials. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1149-1170. doi: 10.3934/dcdss.2016046 |
[15] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[16] |
Patrizia Pucci. Critical Schrödinger-Hardy systems in the Heisenberg group. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 375-400. doi: 10.3934/dcdss.2019025 |
[17] |
Daniele Cassani, Bernhard Ruf, Cristina Tarsi. On the capacity approach to non-attainability of Hardy's inequality in $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 245-250. doi: 10.3934/dcdss.2019017 |
[18] |
Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems and Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475 |
[19] |
Jaime Cruz-Sampedro. Schrödinger-like operators and the eikonal equation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 495-510. doi: 10.3934/cpaa.2014.13.495 |
[20] |
Fritz Gesztesy, Roger Nichols. On absence of threshold resonances for Schrödinger and Dirac operators. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3427-3460. doi: 10.3934/dcdss.2020243 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]