\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stable discretizations of the Cahn-Hilliard-Gurtin equations

Abstract Related Papers Cited by
  • We study space and time discretizations of the Cahn-Hilliard-Gurtin equations with a polynomial nonlinearity. We first consider a space semi-discrete version of the equations, and we prove in particular that any solution converges to a steady state (as in the continuous case). Then, we study the numerical stability of the fully discrete scheme obtained by applying the Euler backward scheme to the space semi-discrete problem. In particular, we show that this fully discrete problem is unconditionally stable. Numerical simulations in one space dimension conclude the paper.
    Mathematics Subject Classification: 65M12, 65M60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(63) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return