February  2008, 22(1&2): 111-130. doi: 10.3934/dcds.2008.22.111

Rigid particle systems and their billiard models

1. 

26 Egerton Road, Arlington, MA 02474

Received  July 2007 Revised  September 2007 Published  June 2008

Elsewhere [1] we have shown that mechanical systems involving free motion with elastic collisions can be modeled as billiards. In this paper we explore what sorts of billiard systems arise in this way, and we explore some of the dynamical properties that can be determined from modeling the systems as billiards.
Citation: David Cowan. Rigid particle systems and their billiard models. Discrete & Continuous Dynamical Systems, 2008, 22 (1&2) : 111-130. doi: 10.3934/dcds.2008.22.111
[1]

Christopher Cox, Renato Feres. Differential geometry of rigid bodies collisions and non-standard billiards. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6065-6099. doi: 10.3934/dcds.2016065

[2]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[3]

Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020

[4]

Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181

[5]

Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785

[6]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[7]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[8]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[9]

Péter Bálint, Imre Péter Tóth. Hyperbolicity in multi-dimensional Hamiltonian systems with applications to soft billiards. Discrete & Continuous Dynamical Systems, 2006, 15 (1) : 37-59. doi: 10.3934/dcds.2006.15.37

[10]

Fabio Scalco Dias, Luis Fernando Mello. The center--focus problem and small amplitude limit cycles in rigid systems. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1627-1637. doi: 10.3934/dcds.2012.32.1627

[11]

Jaume Llibre, Roland Rabanal. Center conditions for a class of planar rigid polynomial differential systems. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 1075-1090. doi: 10.3934/dcds.2015.35.1075

[12]

Eliot Fried. New insights into the classical mechanics of particle systems. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1469-1504. doi: 10.3934/dcds.2010.28.1469

[13]

Nicolas Forcadel, Cyril Imbert, Régis Monneau. Homogenization of some particle systems with two-body interactions and of the dislocation dynamics. Discrete & Continuous Dynamical Systems, 2009, 23 (3) : 785-826. doi: 10.3934/dcds.2009.23.785

[14]

Doron Levy, Tiago Requeijo. Modeling group dynamics of phototaxis: From particle systems to PDEs. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 103-128. doi: 10.3934/dcdsb.2008.9.103

[15]

Alberto Bressan, Truyen Nguyen. Non-existence and non-uniqueness for multidimensional sticky particle systems. Kinetic & Related Models, 2014, 7 (2) : 205-218. doi: 10.3934/krm.2014.7.205

[16]

W. Patrick Hooper, Richard Evan Schwartz. Billiards in nearly isosceles triangles. Journal of Modern Dynamics, 2009, 3 (2) : 159-231. doi: 10.3934/jmd.2009.3.159

[17]

Serge Tabachnikov. Birkhoff billiards are insecure. Discrete & Continuous Dynamical Systems, 2009, 23 (3) : 1035-1040. doi: 10.3934/dcds.2009.23.1035

[18]

Simon Castle, Norbert Peyerimhoff, Karl Friedrich Siburg. Billiards in ideal hyperbolic polygons. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 893-908. doi: 10.3934/dcds.2011.29.893

[19]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[20]

Richard Evan Schwartz. Outer billiards and the pinwheel map. Journal of Modern Dynamics, 2011, 5 (2) : 255-283. doi: 10.3934/jmd.2011.5.255

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]