February  2008, 22(1&2): 165-182. doi: 10.3934/dcds.2008.22.165

Bouncing balls in non-linear potentials

1. 

Department of Mathematics University of Maryland, College Park MD 21742

Received  February 2007 Revised  May 2007 Published  June 2008

We consider a ball bouncing off infinitely heavy periodically moving plate in the presence of a potential force. Assuming that the potential equals to a power of the ball's height we present conditions guaranteeing recurrence in the sense that the total energy of almost every trajectory does not go to infinity.
Citation: Dmitry Dolgopyat. Bouncing balls in non-linear potentials. Discrete & Continuous Dynamical Systems, 2008, 22 (1&2) : 165-182. doi: 10.3934/dcds.2008.22.165
[1]

Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257

[2]

Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112

[3]

Ilya Schurov. Duck farming on the two-torus: Multiple canard cycles in generic slow-fast systems. Conference Publications, 2011, 2011 (Special) : 1289-1298. doi: 10.3934/proc.2011.2011.1289

[4]

Anatoly Neishtadt, Carles Simó, Dmitry Treschev, Alexei Vasiliev. Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 621-650. doi: 10.3934/dcdsb.2008.10.621

[5]

Jie Xu, Yu Miao, Jicheng Liu. Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2233-2256. doi: 10.3934/dcdsb.2015.20.2233

[6]

Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021

[7]

Renato Huzak. Cyclicity of the origin in slow-fast codimension 3 saddle and elliptic bifurcations. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 171-215. doi: 10.3934/dcds.2016.36.171

[8]

Chunhua Shan. Slow-fast dynamics and nonlinear oscillations in transmission of mosquito-borne diseases. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021097

[9]

Renato Huzak, P. De Maesschalck, Freddy Dumortier. Primary birth of canard cycles in slow-fast codimension 3 elliptic bifurcations. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2641-2673. doi: 10.3934/cpaa.2014.13.2641

[10]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6285-6310. doi: 10.3934/dcdsb.2021019

[11]

Victoriano Carmona, Emilio Freire, Soledad Fernández-García. Periodic orbits and invariant cones in three-dimensional piecewise linear systems. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 59-72. doi: 10.3934/dcds.2015.35.59

[12]

Alexandre Caboussat, Allison Leonard. Numerical solution and fast-slow decomposition of a population of weakly coupled systems. Conference Publications, 2009, 2009 (Special) : 123-132. doi: 10.3934/proc.2009.2009.123

[13]

J. B. van den Berg, J. D. Mireles James. Parameterization of slow-stable manifolds and their invariant vector bundles: Theory and numerical implementation. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 4637-4664. doi: 10.3934/dcds.2016002

[14]

Andrea Davini, Maxime Zavidovique. Weak KAM theory for nonregular commuting Hamiltonians. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 57-94. doi: 10.3934/dcdsb.2013.18.57

[15]

C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603

[16]

Jian Song, Meng Wang. Stochastic maximum principle for systems driven by local martingales with spatial parameters. Probability, Uncertainty and Quantitative Risk, 2021, 6 (3) : 213-236. doi: 10.3934/puqr.2021011

[17]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3367-3387. doi: 10.3934/dcds.2020409

[18]

Michele V. Bartuccelli, G. Gentile, Kyriakos V. Georgiou. Kam theory, Lindstedt series and the stability of the upside-down pendulum. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 413-426. doi: 10.3934/dcds.2003.9.413

[19]

Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069

[20]

Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]