$\phi \leq \theta \circ T - \theta + m(\phi, T)$
where $m(\phi, T)=$sup{$\int \phi d\mu:\mu$ is an invariant probability measure for $ T$}. The existence and regularity of sub-actions are important for the study of optimizing measures. We prove the existence of Hölder sub-actions for Lipschitz functions on certain classes of Manneville-Pomeau type maps. We also construct locally Hölder sub-actions for Lipschitz functions on Young Towers. In some settings (uniform hyperbolicity and Manneville-Pomeau maps) this implies Hölder sub-actions for the underlying system modeled by the Tower.
Citation: |