
Previous Article
Bott integrable Hamiltonian systems on $S^{2}\times S^{1}$
 DCDS Home
 This Issue

Next Article
Subactions for young towers
Longtime dynamics of a coupled system of nonlinear wave and thermoelastic plate equations
1.  Università degli Studi di Firenze, Dipartimento di Matematica Applicata, Via S. Marta 3, 50139 Firenze 
2.  Kharkov National Universit, Department of Mathematics and Mechanics, 4 Svobody sq, 61077 Kharkov, Ukraine 
[1] 
Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165174. doi: 10.3934/cpaa.2005.4.165 
[2] 
A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 119138. doi: 10.3934/dcds.2011.31.119 
[3] 
Brahim Alouini. Finite dimensional global attractor for a class of twocoupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021013 
[4] 
Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems  B, 2014, 19 (1) : 217230. doi: 10.3934/dcdsb.2014.19.217 
[5] 
Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Longterm dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 459509. doi: 10.3934/dcds.2008.20.459 
[6] 
Belinda A. Batten, Hesam Shoori, John R. Singler, Madhuka H. Weerasinghe. Balanced truncation model reduction of a nonlinear cablemass PDE system with interior damping. Discrete & Continuous Dynamical Systems  B, 2019, 24 (1) : 83107. doi: 10.3934/dcdsb.2018162 
[7] 
Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure & Applied Analysis, 2007, 6 (1) : 113140. doi: 10.3934/cpaa.2007.6.113 
[8] 
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems  B, 2021, 26 (12) : 62076228. doi: 10.3934/dcdsb.2021015 
[9] 
Messoud Efendiev, Etsushi Nakaguchi, Wolfgang L. Wendland. Uniform estimate of dimension of the global attractor for a semidiscretized chemotaxisgrowth system. Conference Publications, 2007, 2007 (Special) : 334343. doi: 10.3934/proc.2007.2007.334 
[10] 
Fang Li, Bo You. On the dimension of global attractor for the CahnHilliardBrinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems  B, 2021, 26 (12) : 63876403. doi: 10.3934/dcdsb.2021024 
[11] 
Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with timedependent damping. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 43074320. doi: 10.3934/dcds.2012.32.4307 
[12] 
Roberto Triggiani. The coupled PDE system of a composite (sandwich) beam revisited. Discrete & Continuous Dynamical Systems  B, 2003, 3 (2) : 285298. doi: 10.3934/dcdsb.2003.3.285 
[13] 
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the spacetime finite element discretization of an optimal control problem governed by a coupled linear PDEODE system. Mathematical Control & Related Fields, 2021, 11 (3) : 601624. doi: 10.3934/mcrf.2021014 
[14] 
Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 10011014. doi: 10.3934/proc.2011.2011.1001 
[15] 
Qilin Xie, Jianshe Yu. Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension. Communications on Pure & Applied Analysis, 2019, 18 (1) : 129158. doi: 10.3934/cpaa.2019008 
[16] 
Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic nonautonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 28872914. doi: 10.3934/dcds.2016.36.2887 
[17] 
Bin Li. On the blowup criterion and global existence of a nonlinear PDE system in biological transport networks. Kinetic & Related Models, 2019, 12 (5) : 11311162. doi: 10.3934/krm.2019043 
[18] 
Salah Missaoui. Regularity of the attractor for a coupled KleinGordonSchrödinger system in $ \mathbb{R}^3 $ nonlinear KGS system. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2021189 
[19] 
Chunxiang Zhao, Chunyan Zhao, Chengkui Zhong. The global attractor for a class of extensible beams with nonlocal weak damping. Discrete & Continuous Dynamical Systems  B, 2020, 25 (3) : 935955. doi: 10.3934/dcdsb.2019197 
[20] 
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Kortewegde Vries type equations posed on a finite domain. Mathematical Control & Related Fields, 2011, 1 (3) : 353389. doi: 10.3934/mcrf.2011.1.353 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]