-
Previous Article
Well-posedness for regularized nonlinear dispersive wave equations
- DCDS Home
- This Issue
-
Next Article
A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation
Sharp well-posedness results for the BBM equation
1. | Department of Mathematics, Statistics and Computer Science, The University of Illinois at Chicago , 851 S. Morgan Street MC 249, Chicago, Illinois 60607-7045 |
2. | Laboratoire Paul Painlevé, Bâtiment M2, Cité scientifique, 59655 Villeneuve D'ascq Cedex, France |
$ u_{t}+u_{x}+u u_{x}-u_{x x t} = 0 $
was derived as a model for the unidirectional propagation of long-crested, surface water waves. It arises in other contexts as well, and is generally understood as an alternative to the Korteweg-de Vries equation. Considered here is the initial-value problem wherein $u$ is specified everywhere at a given time $t = 0$, say, and inquiry is then made into its further development for $t>0$. It is proven that this initial-value problem is globally well posed in the $L^2$-based Sobolev class $H^s$ if $s \geq 0$. Moreover, the map that associates the relevant solution to given initial data is shown to be smooth. On the other hand, if $s < 0$, it is demonstrated that the correspondence between initial data and putative solutions cannot be even of class $C^2$. Hence, it is concluded that the BBM equation cannot be solved by iteration of a bounded mapping leading to a fixed point in $H^s$-based spaces for $s < 0$. One is thus led to surmise that the initial-value problem for the BBM equation is not even locally well posed in $H^s$ for negative values of $s$.
[1] |
Jerry L. Bona, Hongqiu Chen, Chun-Hsiung Hsia. Well-posedness for the BBM-equation in a quarter plane. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1149-1163. doi: 10.3934/dcdss.2014.7.1149 |
[2] |
Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053 |
[3] |
Ricardo A. Pastrán, Oscar G. Riaño. Sharp well-posedness for the Chen-Lee equation. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2179-2202. doi: 10.3934/cpaa.2016033 |
[4] |
Didier Pilod. Sharp well-posedness results for the Kuramoto-Velarde equation. Communications on Pure and Applied Analysis, 2008, 7 (4) : 867-881. doi: 10.3934/cpaa.2008.7.867 |
[5] |
Chao Yang. Sharp condition of global well-posedness for inhomogeneous nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4631-4642. doi: 10.3934/dcdss.2021136 |
[6] |
Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393 |
[7] |
Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321 |
[8] |
Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393 |
[9] |
Seung-Yeal Ha, Jinyeong Park, Xiongtao Zhang. A global well-posedness and asymptotic dynamics of the kinetic Winfree equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1317-1344. doi: 10.3934/dcdsb.2019229 |
[10] |
Hideo Takaoka. Global well-posedness for the Kadomtsev-Petviashvili II equation. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 483-499. doi: 10.3934/dcds.2000.6.483 |
[11] |
Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1 |
[12] |
Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007 |
[13] |
Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036 |
[14] |
A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469 |
[15] |
Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527 |
[16] |
Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027 |
[17] |
Wei Yan, Yimin Zhang, Yongsheng Li, Jinqiao Duan. Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5825-5849. doi: 10.3934/dcds.2021097 |
[18] |
Nobu Kishimoto, Minjie Shan, Yoshio Tsutsumi. Global well-posedness and existence of the global attractor for the Kadomtsev-Petviashvili Ⅱ equation in the anisotropic Sobolev space. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1283-1307. doi: 10.3934/dcds.2020078 |
[19] |
Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657 |
[20] |
Jinkai Li, Edriss Titi. Global well-posedness of strong solutions to a tropical climate model. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4495-4516. doi: 10.3934/dcds.2016.36.4495 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]