-
Previous Article
Orbital minimization with localization
- DCDS Home
- This Issue
-
Next Article
Homogenization of oscillating boundaries
Third order equivalent equation of lattice Boltzmann scheme
1. | Numerical Analysis and Partial Differential Equations, Department of Mathematics, University Paris Sud, Bat. 425, F-91405 Orsay Cedex, France |
[1] |
Barbara Kaltenbacher. Mathematics of nonlinear acoustics. Evolution Equations and Control Theory, 2015, 4 (4) : 447-491. doi: 10.3934/eect.2015.4.447 |
[2] |
Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349 |
[3] |
Zhonghua Qiao, Xuguang Yang. A multiple-relaxation-time lattice Boltzmann method with Beam-Warming scheme for a coupled chemotaxis-fluid model. Electronic Research Archive, 2020, 28 (3) : 1207-1225. doi: 10.3934/era.2020066 |
[4] |
Adrien Dekkers, Anna Rozanova-Pierrat, Vladimir Khodygo. Models of nonlinear acoustics viewed as approximations of the Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4231-4258. doi: 10.3934/dcds.2020179 |
[5] |
Rainer Buckdahn, Ingo Bulla, Jin Ma. Pathwise Taylor expansions for Itô random fields. Mathematical Control and Related Fields, 2011, 1 (4) : 437-468. doi: 10.3934/mcrf.2011.1.437 |
[6] |
Yaozhong Hu, Yanghui Liu, David Nualart. Taylor schemes for rough differential equations and fractional diffusions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3115-3162. doi: 10.3934/dcdsb.2016090 |
[7] |
Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515 |
[8] |
Pooja Girotra, Jyoti Ahuja, Dinesh Verma. Analysis of Rayleigh Taylor instability in nanofluids with rotation. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 495-512. doi: 10.3934/naco.2021018 |
[9] |
Pedro M. Jordan, Barbara Kaltenbacher. Introduction to the special volume ``Mathematics of nonlinear acoustics: New approaches in analysis and modeling''. Evolution Equations and Control Theory, 2016, 5 (3) : i-ii. doi: 10.3934/eect.201603i |
[10] |
H. T. Banks, R.C. Smith. Feedback control of noise in a 2-D nonlinear structural acoustics model. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 119-149. doi: 10.3934/dcds.1995.1.119 |
[11] |
Ivan C. Christov. Nonlinear acoustics and shock formation in lossless barotropic Green--Naghdi fluids. Evolution Equations and Control Theory, 2016, 5 (3) : 349-365. doi: 10.3934/eect.2016008 |
[12] |
Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029 |
[13] |
Sonja Cox, Arnulf Jentzen, Ryan Kurniawan, Primož Pušnik. On the mild Itô formula in Banach spaces. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2217-2243. doi: 10.3934/dcdsb.2018232 |
[14] |
Peter Seibt. A period formula for torus automorphisms. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 1029-1048. doi: 10.3934/dcds.2003.9.1029 |
[15] |
Hans F. Weinberger, Xiao-Qiang Zhao. An extension of the formula for spreading speeds. Mathematical Biosciences & Engineering, 2010, 7 (1) : 187-194. doi: 10.3934/mbe.2010.7.187 |
[16] |
Gamaliel Blé, Carlos Cabrera. A generalization of Douady's formula. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6183-6188. doi: 10.3934/dcds.2017267 |
[17] |
Masaaki Fukasawa, Jim Gatheral. A rough SABR formula. Frontiers of Mathematical Finance, 2022, 1 (1) : 81-97. doi: 10.3934/fmf.2021003 |
[18] |
Igor Rivin and Jean-Marc Schlenker. The Schlafli formula in Einstein manifolds with boundary. Electronic Research Announcements, 1999, 5: 18-23. |
[19] |
Xiaomin Zhou. A formula of conditional entropy and some applications. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 4063-4075. doi: 10.3934/dcds.2016.36.4063 |
[20] |
Tae Gab Ha. On the viscoelastic equation with Balakrishnan-Taylor damping and acoustic boundary conditions. Evolution Equations and Control Theory, 2018, 7 (2) : 281-291. doi: 10.3934/eect.2018014 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]