January & February  2009, 23(1&2): 341-365. doi: 10.3934/dcds.2009.23.341

Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity

1. 

Laboratoire Jacques-Louis Lions & Centre National de la Recherche Scientique, Université Pierre et Marie Curie (Paris 6), 4 Place Jussieu, 75252 Paris, France

2. 

Laboratoire Jacques-Louis Lions & Centre National de la Recherche Scientique, Universite Pierre et Marie Curie (Paris 6), 4 Place Jussieu, 75252 Paris

3. 

Institüt für Mathematik, Abt. Angewandte Mathematik, Universitüt Zürich, Winterthurerstrasse 190, 8057 Zürich, Swaziland

Received  November 2007 Revised  January 2008 Published  September 2008

Assuming minimal regularity assumptions on the data, we revisit the classical problem of findingisometric immersions into the Minkowski spacetime for hypersurfaces of a Lorentzian manifold.Our approach encompasses metrics having Sobolev regularity and Riemann curvature definedin the distributional sense, only.It applies to timelike, spacelike, or null hypersurfaces with arbitrary signature that possibly changesfrom point to point.
Citation: Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341
[1]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[2]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[3]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[4]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[5]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[6]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (1)

[Back to Top]