February  2009, 23(1&2): 521-540. doi: 10.3934/dcds.2009.23.521

Upper semi-continuity of stationary statistical properties of dissipative systems

1. 

Department of Mathematics, Florida State University, Tallahassee, FL32306

Received  November 2007 Revised  April 2008 Published  September 2008

We show that stationary statistical properties for uniformlydissipative dynamical systems are upper semi-continuous underregular perturbation and a special type of singular perturbationin time of relaxation type. The results presented are applicableto many physical systems such as the singular limit of infinitePrandtl-Darcy number in the Darcy-Boussinesq system forconvection in porous media, or the large Prandtl asymptotics forthe Boussinesq system.
Citation: Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521
[1]

B. A. Wagner, Andrea L. Bertozzi, L. E. Howle. Positive feedback control of Rayleigh-Bénard convection. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 619-642. doi: 10.3934/dcdsb.2003.3.619

[2]

Tian Ma, Shouhong Wang. Attractor bifurcation theory and its applications to Rayleigh-Bénard convection. Communications on Pure and Applied Analysis, 2003, 2 (4) : 591-599. doi: 10.3934/cpaa.2003.2.591

[3]

Tingyuan Deng. Three-dimensional sphere $S^3$-attractors in Rayleigh-Bénard convection. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 577-591. doi: 10.3934/dcdsb.2010.13.577

[4]

Toshiyuki Ogawa. Bifurcation analysis to Rayleigh-Bénard convection in finite box with up-down symmetry. Communications on Pure and Applied Analysis, 2006, 5 (2) : 383-393. doi: 10.3934/cpaa.2006.5.383

[5]

Jungho Park. Dynamic bifurcation theory of Rayleigh-Bénard convection with infinite Prandtl number. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 591-604. doi: 10.3934/dcdsb.2006.6.591

[6]

Jhean E. Pérez-López, Diego A. Rueda-Gómez, Élder J. Villamizar-Roa. On the Rayleigh-Bénard-Marangoni problem: Theoretical and numerical analysis. Journal of Computational Dynamics, 2020, 7 (1) : 159-181. doi: 10.3934/jcd.2020006

[7]

Björn Birnir, Nils Svanstedt. Existence theory and strong attractors for the Rayleigh-Bénard problem with a large aspect ratio. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 53-74. doi: 10.3934/dcds.2004.10.53

[8]

Pengyu Chen, Xuping Zhang. Upper semi-continuity of attractors for non-autonomous fractional stochastic parabolic equations with delay. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4325-4357. doi: 10.3934/dcdsb.2020290

[9]

Xiaohui Zhang, Xuping Zhang. Upper semi-continuity of non-autonomous fractional stochastic $ p $-Laplacian equation driven by additive noise on $ \mathbb{R}^n $. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022081

[10]

Xiaoming Wang. Numerical algorithms for stationary statistical properties of dissipative dynamical systems. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4599-4618. doi: 10.3934/dcds.2016.36.4599

[11]

José Antonio Carrillo, Marco Di Francesco, Antonio Esposito, Simone Fagioli, Markus Schmidtchen. Measure solutions to a system of continuity equations driven by Newtonian nonlocal interactions. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 1191-1231. doi: 10.3934/dcds.2020075

[12]

P.E. Kloeden, Pedro Marín-Rubio, José Real. Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations. Communications on Pure and Applied Analysis, 2009, 8 (3) : 785-802. doi: 10.3934/cpaa.2009.8.785

[13]

Isabel Mercader, Oriol Batiste, Arantxa Alonso, Edgar Knobloch. Dissipative solitons in binary fluid convection. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1213-1225. doi: 10.3934/dcdss.2011.4.1213

[14]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1497-1510. doi: 10.3934/dcdsb.2021099

[15]

Marco Cabral, Ricardo Rosa, Roger Temam. Existence and dimension of the attractor for the Bénard problem on channel-like domains. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 89-116. doi: 10.3934/dcds.2004.10.89

[16]

O. V. Kapustyan, V. S. Melnik, José Valero. A weak attractor and properties of solutions for the three-dimensional Bénard problem. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 449-481. doi: 10.3934/dcds.2007.18.449

[17]

Jann-Long Chern, Zhi-You Chen, Yong-Li Tang. Structure of solutions to a singular Liouville system arising from modeling dissipative stationary plasmas. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2299-2318. doi: 10.3934/dcds.2013.33.2299

[18]

Tomasz Szarek, Mariusz Urbański, Anna Zdunik. Continuity of Hausdorff measure for conformal dynamical systems. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4647-4692. doi: 10.3934/dcds.2013.33.4647

[19]

Yuntao Zang. An upper bound of the measure-theoretical entropy. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022052

[20]

Lucas Backes, Aaron Brown, Clark Butler. Continuity of Lyapunov exponents for cocycles with invariant holonomies. Journal of Modern Dynamics, 2018, 12: 223-260. doi: 10.3934/jmd.2018009

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (19)

Other articles
by authors

[Back to Top]