\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotically critical problems on higher-dimensional spheres

Abstract Related Papers Cited by
  • The paper is concerned with the equation $-\Delta_{h}u=f(u)$ on $S^d$ where $\Delta_{h}$ denotes the Laplace-Beltrami operator on the standard unit sphere $(S^d,h)$, while the continuous nonlinearity $f:\mathbb R\to \mathbb R$ oscillates either at zero or at infinity having an asymptotically critical growth in the Sobolev sense. In both cases, by using a group-theoretical argument and an appropriate variational approach, we establish the existence of $[{d}/{2}]+(-1)^{d+1}-1$ sequences of sign-changing weak solutions in $H_1^2(S^d)$ whose elements in different sequences are mutually symmetrically distinct whenever $f$ has certain symmetry and $d\geq 5$. Although we are dealing with a smooth problem, we are forced to use a non-smooth version of the principle of symmetric criticality (see Kobayashi-Ôtani, J. Funct. Anal. 214 (2004), 428-449). The $L^\infty$-- and $H_1^2$--asymptotic behaviour of the sequences of solutions are also fully characterized.
    Mathematics Subject Classification: Primary: 35J65, 49J40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(54) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return