Abstract
An IFS ( iterated function system), $([0,1], \tau_{i})$, on the
interval $[0,1]$, is a family of continuous functions
$\tau_{0},\tau_{1}, ..., \tau_{d-1} : [0,1] \to [0,1]$. Associated to a IFS one can consider a continuous map
$\hat{\sigma} : [0,1]\times \Sigma \to [0,1]\times \Sigma$,
defined by $\hat{\sigma}(x,w)=(\tau_{X_{1}(w)}(x), \sigma(w))$
where $\Sigma=\{0,1, ..., d-1\}^{\mathbb{N}}$, $\sigma: \Sigma \to
\Sigma$ is given by
$\sigma(w_{1},w_{2},w_{3},...)=(w_{2},w_{3},w_{4}...)$ and $X_{k}
: \Sigma \to \{0,1, ..., n-1\}$ is the projection on the
coordinate $k$. A $\rho$-weighted system, $\rho \geq 0$, is a weighted system
$([0,1], \tau_{i}, u_{i})$ such that there exists a positive
bounded function $h : [0,1] \to \mathbb{R}$ and a probability $\nu $
on $[0,1]$ satisfying $ P_{u}(h)=\rho h, \quad P_{u}^{*}(\nu)=\rho
\nu$.
A probability $\hat{\nu}$ on $[0,1]\times \Sigma$ is called
holonomic for $\hat{\sigma}$, if, $ \int\, g \circ \hat{\sigma}\,
d\hat{\nu}= \int \,g \,d\hat{\nu}, \, \forall g \in C([0,1])$. We
denote the set of holonomic probabilities by $\mathcal H$.
For a holonomic probability $\hat{\nu}$ on $[0,1]\times \Sigma$ we
define the entropy $h(\hat{\nu})$=inf$_f \in \mathbb{B}^{+} \int
\ln(\frac{P_{\psi}f}{\psi f}) d\hat{\nu}\geq 0$, where, $\psi \in
\mathbb{B}^{+}$ is a fixed (any one) positive potential.
Finally, we analyze the problem: given $\phi \in \mathbb{B}^{+}$,
find solutions of the maximization problem
$p(\phi)$=
sup$_\hat{\nu} \in \mathcal{H} \{ \,h(\hat{\nu}) + \int \ln(\phi)
d\hat{\nu} \,\}.$ We show an example where a holonomic not-$\hat{\sigma}$-invariant probability attains the
supremum value. In the last section we consider maximizing probabilities, sub-actions and duality for
potentials $A(x,w)$, $(x,w)\in [0,1]\times \Sigma$, for IFS.
Mathematics Subject Classification: Primary: 37A30, 37A35; Secondary: 37A50.
\begin{equation} \\ \end{equation}