# American Institute of Mathematical Sciences

November  2009, 24(4): 1147-1165. doi: 10.3934/dcds.2009.24.1147

## Damped wave equations with fast growing dissipative nonlinearities

 1 Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Caixa postal 668, 13560-970 São Carlos, São Paulo, Brazil 2 Institute of Mathematics, Silesian University, 40-007 Katowice, Poland, Poland

Received  July 2008 Revised  January 2009 Published  May 2009

Let $a>0$, $\Omega\subset \R^N$ be a bounded smooth domain and $-A$ denotes the Laplace operator with Dirichlet boundary condition in $L^2(\Omega)$. We study the damped wave problem

utt$+ a u_t + A u = f(u), \ t>0,$
$u(0)=u_0\in H^1_0(\Omega), \ \ u_t(0)=v_0\in L^2(\Omega),$

where $f:\R\to\R$ is a continuously differentiable function satisfying the growth condition $|f(s)-f(t)|\leq C|s-t|(1+|s|^{\rho-1}+|t|^{\rho-1})$, $1<\rho<\frac{N+2}{N-2}$, ($N\geq 3$), and the dissipativeness condition $\lim$sup$_|s|\to\infty \frac{f(s)}{s}< \lambda_1$ with $\lambda_1$ being the first eigenvalue of $A$. We construct the global weak solutions of this problem as the limits as $\eta\to0^+$ of the solutions of wave equations involving the strong damping term $2\eta A^{1/2} u$ with $\eta>0$. We define a subclass $\mathcal LS\subset C([0,\infty),L^2(\Omega)\times H^{-1}(\Omega))\cap L^\infty([0,\infty),H^1_0(\Omega)\times L^2(\Omega))$ of the 'limit' solutions such that through each initial condition from $H^1_0(\Omega)\times L^2(\Omega)$ passes at least one solution of the class $\mathcal LS$. We show that the class $\mathcal LS$ has bounded dissipativeness property in $H^1_0(\Omega)\times L^2(\Omega)$ and we construct a closed bounded invariant subset A of $H^1_0(\Omega)\times L^2(\Omega)$, which is weakly compact in $H^1_0(\Omega)\times L^2(\Omega)$ and compact in $H^s_{\I}(\Omega)\times H^{s-1}(\Omega)$, $s\in[0,1)$. Furthermore A attracts bounded subsets of $H^1_0(\Omega)\times L^2(\Omega)$ in $H^s_\{I\}(\Omega)\times H^{s-1}(\Omega)$, for each $s\in[0,1)$. For $N=3,4,5$ we also prove a local uniqueness result for the case of smooth initial data.

Citation: Alexandre Nolasco de Carvalho, Jan W. Cholewa, Tomasz Dlotko. Damped wave equations with fast growing dissipative nonlinearities. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1147-1165. doi: 10.3934/dcds.2009.24.1147
 [1] Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure and Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921 [2] Michel Chipot, Senoussi Guesmia. On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Communications on Pure and Applied Analysis, 2009, 8 (1) : 179-193. doi: 10.3934/cpaa.2009.8.179 [3] Sergey Zelik. Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 351-392. doi: 10.3934/dcds.2004.11.351 [4] Hideo Kubo. Asymptotic behavior of solutions to semilinear wave equations with dissipative structure. Conference Publications, 2007, 2007 (Special) : 602-613. doi: 10.3934/proc.2007.2007.602 [5] Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651 [6] Qingquan Chang, Dandan Li, Chunyou Sun. Random attractors for stochastic time-dependent damped wave equation with critical exponents. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2793-2824. doi: 10.3934/dcdsb.2020033 [7] Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027 [8] Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure and Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41 [9] Filippo Dell'Oro. Global attractors for strongly damped wave equations with subcritical-critical nonlinearities. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1015-1027. doi: 10.3934/cpaa.2013.12.1015 [10] Shengfan Zhou, Linshan Wang. Kernel sections for damped non-autonomous wave equations with critical exponent. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 399-412. doi: 10.3934/dcds.2003.9.399 [11] Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 [12] Seunghyeok Kim. On vector solutions for coupled nonlinear Schrödinger equations with critical exponents. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1259-1277. doi: 10.3934/cpaa.2013.12.1259 [13] Yinbin Deng, Qi Gao, Dandan Zhang. Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on $R^N$. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 211-233. doi: 10.3934/dcds.2007.19.211 [14] Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123 [15] Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 [16] Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251 [17] Lie Zheng. Asymptotic behavior of solutions to the nonlinear breakage equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 463-473. doi: 10.3934/cpaa.2005.4.463 [18] Yutian Lei, Chao Ma. Asymptotic behavior for solutions of some integral equations. Communications on Pure and Applied Analysis, 2011, 10 (1) : 193-207. doi: 10.3934/cpaa.2011.10.193 [19] José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 [20] Peter E. Kloeden, Jacson Simsen, Petra Wittbold. Asymptotic behavior of coupled inclusions with variable exponents. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1001-1016. doi: 10.3934/cpaa.2020046

2021 Impact Factor: 1.588