-
Previous Article
Boltzmann equation, boundary effects
- DCDS Home
- This Issue
-
Next Article
Persistence of Boltzmann entropy in fluid models
Uniform $L^p$-stability theory for the space-inhomogeneous Boltzmann equation with external forces
1. | Department of Mathematical Sciences, Seoul National University, Seoul 151-747, South Korea, South Korea |
[1] |
Seung-Yeal Ha, Mitsuru Yamazaki. $L^p$-stability estimates for the spatially inhomogeneous discrete velocity Boltzmann model. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 353-364. doi: 10.3934/dcdsb.2009.11.353 |
[2] |
Seung-Yeal Ha, Eunhee Jeong, Robert M. Strain. Uniform $L^1$-stability of the relativistic Boltzmann equation near vacuum. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1141-1161. doi: 10.3934/cpaa.2013.12.1141 |
[3] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[4] |
Shaofei Wu, Mingqing Wang, Maozhu Jin, Yuntao Zou, Lijun Song. Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1005-1013. doi: 10.3934/dcdss.2019068 |
[5] |
Marc Briant. Stability of global equilibrium for the multi-species Boltzmann equation in $L^\infty$ settings. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6669-6688. doi: 10.3934/dcds.2016090 |
[6] |
Stéphane Brull, Pierre Charrier, Luc Mieussens. Gas-surface interaction and boundary conditions for the Boltzmann equation. Kinetic and Related Models, 2014, 7 (2) : 219-251. doi: 10.3934/krm.2014.7.219 |
[7] |
Raffaele Esposito, Mario Pulvirenti. Rigorous validity of the Boltzmann equation for a thin layer of a rarefied gas. Kinetic and Related Models, 2010, 3 (2) : 281-297. doi: 10.3934/krm.2010.3.281 |
[8] |
Karsten Matthies, George Stone, Florian Theil. The derivation of the linear Boltzmann equation from a Rayleigh gas particle model. Kinetic and Related Models, 2018, 11 (1) : 137-177. doi: 10.3934/krm.2018008 |
[9] |
Kevin Zumbrun. L∞ resolvent bounds for steady Boltzmann's Equation. Kinetic and Related Models, 2017, 10 (4) : 1255-1257. doi: 10.3934/krm.2017048 |
[10] |
Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic and Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53 |
[11] |
El Miloud Zaoui, Marc Laforest. Stability and modeling error for the Boltzmann equation. Kinetic and Related Models, 2014, 7 (2) : 401-414. doi: 10.3934/krm.2014.7.401 |
[12] |
Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations and Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365 |
[13] |
Mohamed Tij, Andrés Santos. Non-Newtonian Couette-Poiseuille flow of a dilute gas. Kinetic and Related Models, 2011, 4 (1) : 361-384. doi: 10.3934/krm.2011.4.361 |
[14] |
Soumen Senapati, Manmohan Vashisth. Stability estimate for a partial data inverse problem for the convection-diffusion equation. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021060 |
[15] |
Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic and Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673 |
[16] |
Karsten Matthies, George Stone. Derivation of a non-autonomous linear Boltzmann equation from a heterogeneous Rayleigh gas. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3299-3355. doi: 10.3934/dcds.2018143 |
[17] |
Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the stability problem for the Boussinesq equations in weak-$L^p$ spaces. Communications on Pure and Applied Analysis, 2010, 9 (3) : 667-684. doi: 10.3934/cpaa.2010.9.667 |
[18] |
Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. $L^p$ Estimates for the wave equation with the inverse-square potential. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 427-442. doi: 10.3934/dcds.2003.9.427 |
[19] |
Matthias Geissert, Horst Heck, Matthias Hieber, Okihiro Sawada. Remarks on the $L^p$-approach to the Stokes equation on unbounded domains. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 291-297. doi: 10.3934/dcdss.2010.3.291 |
[20] |
Zhigang Wu, Wenjun Wang. Uniform stability of the Boltzmann equation with an external force near vacuum. Communications on Pure and Applied Analysis, 2015, 14 (3) : 811-823. doi: 10.3934/cpaa.2015.14.811 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]