June  2009, 24(2): 349-366. doi: 10.3934/dcds.2009.24.349

On dynamical systems close to a product of $m$ rotations

1. 

Hasselt University, Agoralaan, gebouw D, B-3590 Diepenbeek

2. 

Department of Mathematics FUNDP, Rempart de la Vierge, 8, B-5000 Namur, Belgium

3. 

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via, 585, 08007 Barcelona

Received  May 2007 Revised  June 2008 Published  March 2009

We consider one parameter families of analytic vector fields and diffeomorphisms, including for a parameter value, say $\varepsilon = 0$, the product of rotations in $\R^{2m}\times \R^n$ such that for positive values of the parameter the origin is a hyperbolic point of saddle type. We address the question of determining the limit stable invariant manifold when $\varepsilon$ goes to zero as a subcenter invariant manifold when $\varepsilon = 0$.
Citation: Patrick Bonckaert, Timoteo Carletti, Ernest Fontich. On dynamical systems close to a product of $m$ rotations. Discrete & Continuous Dynamical Systems, 2009, 24 (2) : 349-366. doi: 10.3934/dcds.2009.24.349
[1]

Pablo Aguirre, Eusebius J. Doedel, Bernd Krauskopf, Hinke M. Osinga. Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1309-1344. doi: 10.3934/dcds.2011.29.1309

[2]

Rovella Alvaro, Vilamajó Francesc, Romero Neptalí. Invariant manifolds for delay endomorphisms. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 35-50. doi: 10.3934/dcds.2001.7.35

[3]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[4]

Leonardo Mora. Homoclinic bifurcations, fat attractors and invariant curves. Discrete & Continuous Dynamical Systems, 2003, 9 (5) : 1133-1148. doi: 10.3934/dcds.2003.9.1133

[5]

Oskar A. Sultanov. Bifurcations in asymptotically autonomous Hamiltonian systems under oscillatory perturbations. Discrete & Continuous Dynamical Systems, 2021, 41 (12) : 5943-5978. doi: 10.3934/dcds.2021102

[6]

José F. Alves, Davide Azevedo. Statistical properties of diffeomorphisms with weak invariant manifolds. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 1-41. doi: 10.3934/dcds.2016.36.1

[7]

George Osipenko. Indestructibility of invariant locally non-unique manifolds. Discrete & Continuous Dynamical Systems, 1996, 2 (2) : 203-219. doi: 10.3934/dcds.1996.2.203

[8]

Henk Broer, Aaron Hagen, Gert Vegter. Numerical approximation of normally hyperbolic invariant manifolds. Conference Publications, 2003, 2003 (Special) : 133-140. doi: 10.3934/proc.2003.2003.133

[9]

Christopher K. R. T. Jones, Siu-Kei Tin. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 967-1023. doi: 10.3934/dcdss.2009.2.967

[10]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete & Continuous Dynamical Systems, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579

[11]

Arturo Echeverría-Enríquez, Alberto Ibort, Miguel C. Muñoz-Lecanda, Narciso Román-Roy. Invariant forms and automorphisms of locally homogeneous multisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (4) : 397-419. doi: 10.3934/jgm.2012.4.397

[12]

Roberto Castelli. Efficient representation of invariant manifolds of periodic orbits in the CRTBP. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 563-586. doi: 10.3934/dcdsb.2018197

[13]

Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1

[14]

Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021, 41 (10) : 4667-4704. doi: 10.3934/dcds.2021053

[15]

Alexey Gorshkov. Stable invariant manifolds with application to control problems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021040

[16]

Denis G. Gaidashev. Renormalization of isoenergetically degenerate hamiltonian flows and associated bifurcations of invariant tori. Discrete & Continuous Dynamical Systems, 2005, 13 (1) : 63-102. doi: 10.3934/dcds.2005.13.63

[17]

Anna Goƚȩbiewska, Norimichi Hirano, Sƚawomir Rybicki. Global symmetry-breaking bifurcations of critical orbits of invariant functionals. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2005-2017. doi: 10.3934/dcdss.2019129

[18]

Ale Jan Homburg. Heteroclinic bifurcations of $\Omega$-stable vector fields on 3-manifolds. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 559-580. doi: 10.3934/dcds.1998.4.559

[19]

Paola Mannucci, Claudio Marchi, Nicoletta Tchou. Asymptotic behaviour for operators of Grushin type: Invariant measure and singular perturbations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 119-128. doi: 10.3934/dcdss.2019008

[20]

Hideyuki Suzuki, Shunji Ito, Kazuyuki Aihara. Double rotations. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 515-532. doi: 10.3934/dcds.2005.13.515

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (0)

[Back to Top]