-
Previous Article
The Boltzmann equation in the 20th century
- DCDS Home
- This Issue
-
Next Article
Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation
Over-populated tails for conservative-in-the-mean inelastic Maxwell models
1. | ICREA-Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain |
2. | Fédération Denis Poisson (FR 2964), Department of Mathematics (MAPMO UMR 6628), University of Orléans and CNRS, F-45067 Orléans, France |
3. | Dipartimento di Matematica, Università di Pavia, via Ferrata 1, I-27100 Pavia, Italy |
[1] |
Yadong Shang, Jianjun Paul Tian, Bixiang Wang. Asymptotic behavior of the stochastic Keller-Segel equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1367-1391. doi: 10.3934/dcdsb.2019020 |
[2] |
Giuseppe Da Prato, Arnaud Debussche. Asymptotic behavior of stochastic PDEs with random coefficients. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1553-1570. doi: 10.3934/dcds.2010.27.1553 |
[3] |
Daehwan Kim, Juncheol Pyo. Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5897-5919. doi: 10.3934/dcds.2018256 |
[4] |
Sanling Yuan, Xuehui Ji, Huaiping Zhu. Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1477-1498. doi: 10.3934/mbe.2017077 |
[5] |
Tian Zhang, Huabin Chen, Chenggui Yuan, Tomás Caraballo. On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5355-5375. doi: 10.3934/dcdsb.2019062 |
[6] |
Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441 |
[7] |
Xiaobin Yao. Asymptotic behavior for stochastic plate equations with memory and additive noise on unbounded domains. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 443-468. doi: 10.3934/dcdsb.2021050 |
[8] |
Ciro D’Apice, Umberto De Maio, T. A. Mel'nyk. Asymptotic analysis of a perturbed parabolic problem in a thick junction of type 3:2:2. Networks and Heterogeneous Media, 2007, 2 (2) : 255-277. doi: 10.3934/nhm.2007.2.255 |
[9] |
Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521 |
[10] |
Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1889-1917. doi: 10.3934/dcdsb.2018247 |
[11] |
Dingshi Li, Xiaohu Wang. Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 449-465. doi: 10.3934/dcdsb.2018181 |
[12] |
Dandan Ma, Ji Shu, Ling Qin. Wong-Zakai approximations and asymptotic behavior of stochastic Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4335-4359. doi: 10.3934/dcdsb.2020100 |
[13] |
G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123 |
[14] |
Yiju Chen, Xiaohu Wang. Asymptotic behavior of non-autonomous fractional stochastic lattice systems with multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021271 |
[15] |
Veronica Felli, Alberto Ferrero, Susanna Terracini. On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 3895-3956. doi: 10.3934/dcds.2012.32.3895 |
[16] |
Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic and Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707 |
[17] |
Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721 |
[18] |
Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105 |
[19] |
Tomasz Komorowski, Łukasz Stȩpień. Kinetic limit for a harmonic chain with a conservative Ornstein-Uhlenbeck stochastic perturbation. Kinetic and Related Models, 2018, 11 (2) : 239-278. doi: 10.3934/krm.2018013 |
[20] |
Mykhailo Potomkin. Asymptotic behavior of thermoviscoelastic Berger plate. Communications on Pure and Applied Analysis, 2010, 9 (1) : 161-192. doi: 10.3934/cpaa.2010.9.161 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]