-
Abstract
Higher order entropies are
kinetic entropy estimators
suggested by Enskog expansion of Boltzmann entropy.
These quantities are
quadratic in the
density $\rho$, velocity $v$
and temperature $T$ renormalized derivatives.
We investigate asymptotic expansions of
higher order entropies for
compressible flows
in terms of the Knudsen
$\epsilon_k$ and Mach $\epsilon_m$ numbers
in the natural situation where
the volume viscosity, the shear viscosity, and the
thermal conductivity
depend on temperature,
essentially in the form $T^x$.
Entropic inequalities
are obtained when
||$\log \rho$||BMO,$\quad$
$\epsilon_m$||$v/\sqrt{T}$|| L ∞ ,$\quad$
||$\log T$||$BMO$,$\quad$
$\epsilon_k$||$h\partial_{x} \rho$/$\rho$|| L ∞ ,
$\epsilon_k$$\epsilon_m$||$h\partial_{x} v$/$\sqrt{T}$ || L ∞ ,
$\epsilon_k$||$h\partial_{x}T$/$T$|| L ∞ ,
and
$\epsilon_k^2$||$h^2\partial^2_x T$/$T$|| L ∞
are small enough,
where
$h = 1/(\rho T^{(1/2) -x)}$
is a weight associated with the dependence on
density and temperature of the mean free path.
Mathematics Subject Classification: Primary: 35Q30, 76N10, 82B40.
\begin{equation} \\ \end{equation}
-
Access History
-