    February  2009, 25(1): 19-61. doi: 10.3934/dcds.2009.25.19

Reaction-diffusion equations for population dynamics with forced speed II - cylindrical-type domains

 1 EHESS, CAMS, 54 Boulevard Raspail, F-75006, Paris

Received  August 2008 Revised  February 2009 Published  June 2009

This work is the continuation of our previous paper . There, we dealt with the reaction-diffusion equation

$\partial_t u=\Delta u+f(x-cte,u),\qquad t>0,\quad x\in\R^N,$

where $e\in S^{N-1}$ and $c>0$ are given and $f(x,s)$ satisfies some usual assumptions in population dynamics, together with $f_s(x,0)<0$ for $|x|$ large. The interest for such equation comes from an ecological model introduced in  describing the effects of global warming on biological species. In ,we proved that existence and uniqueness of travelling wave solutions of the type $u(x,t)=U(x-cte)$ and the large time behaviour of solutions with arbitrary nonnegative bounded initial datum depend on the sign of the generalized principal in $\R^N$ of an associated linear operator. Here, we establish analogous results for the Neumann problem in domains which are asymptotically cylindrical, as well as for the problem in the whole space with $f$ periodic in some space variables, orthogonal to the direction of the shift $e$.
The $L^1$ convergence of solution $u(t,x)$ as $t\to\infty$ is established next. In this paper, we also show that a bifurcation from the zero solution takes place as the principal crosses $0$. We are able to describe the shape of solutions close to extinction thus answering a question raised by M.~Mimura. These two results are new even in the framework considered in .
Another type of problem is obtained by adding to the previous one a term $g(x-c'te,u)$ periodic in $x$ in the direction $e$. Such a model arises when considering environmental change on two different scales. Lastly, we also solve the case of an equation

$\partial_t u=\Delta u+f(t,x-cte,u),$

when $f(t,x,s)$ is periodic in $t$. This for instance represents the seasonal dependence of $f$. In both cases, we obtain a necessary and sufficient condition for the existence, uniqueness and stability of pulsating travelling waves, which are solutions with a profile which is periodic in time.

Citation: Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed II - cylindrical-type domains. Discrete & Continuous Dynamical Systems, 2009, 25 (1) : 19-61. doi: 10.3934/dcds.2009.25.19
  Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707  Juliette Bouhours, Grégroie Nadin. A variational approach to reaction-diffusion equations with forced speed in dimension 1. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1843-1872. doi: 10.3934/dcds.2015.35.1843  Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed I - The case of the whole space. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 41-67. doi: 10.3934/dcds.2008.21.41  Matthieu Alfaro, Jérôme Coville, Gaël Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 1775-1791. doi: 10.3934/dcds.2014.34.1775  C. van der Mee, Stella Vernier Piro. Travelling waves for solid-gas reaction-diffusion systems. Conference Publications, 2003, 2003 (Special) : 872-879. doi: 10.3934/proc.2003.2003.872  Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591  Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281  Sheng-Chen Fu. Travelling waves of a reaction-diffusion model for the acidic nitrate-ferroin reaction. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 189-196. doi: 10.3934/dcdsb.2011.16.189  Sheng-Chen Fu, Je-Chiang Tsai. Stability of travelling waves of a reaction-diffusion system for the acidic nitrate-ferroin reaction. Discrete & Continuous Dynamical Systems, 2013, 33 (9) : 4041-4069. doi: 10.3934/dcds.2013.33.4041  Yuzo Hosono. Phase plane analysis of travelling waves for higher order autocatalytic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 115-125. doi: 10.3934/dcdsb.2007.8.115  Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126  Peter E. Kloeden, Meihua Yang. Forward attracting sets of reaction-diffusion equations on variable domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1259-1271. doi: 10.3934/dcdsb.2019015  Michal Fečkan, Vassilis M. Rothos. Travelling waves of forced discrete nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1129-1145. doi: 10.3934/dcdss.2011.4.1129  H. J. Hupkes, L. Morelli. Travelling corners for spatially discrete reaction-diffusion systems. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1609-1667. doi: 10.3934/cpaa.2020058  Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279  Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23  Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382  Dingshi Li, Kening Lu, Bixiang Wang, Xiaohu Wang. Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 187-208. doi: 10.3934/dcds.2018009  Dingshi Li, Kening Lu, Bixiang Wang, Xiaohu Wang. Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 3717-3747. doi: 10.3934/dcds.2019151  Fuzhi Li, Yangrong Li, Renhai Wang. Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise. Discrete & Continuous Dynamical Systems, 2018, 38 (7) : 3663-3685. doi: 10.3934/dcds.2018158

2020 Impact Factor: 1.392