-
Previous Article
On a constrained reaction-diffusion system related to multiphase problems
- DCDS Home
- This Issue
-
Next Article
Upper bounds for coarsening for the degenerate Cahn-Hilliard equation
Bifurcation analysis to Swift-Hohenberg equation with Steklov type boundary conditions
1. | Graduate School of Engineering Science, Osaka University, 560-8531 Toyonaka |
2. | Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan |
[1] |
Jongmin Han, Masoud Yari. Dynamic bifurcation of the complex Swift-Hohenberg equation. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 875-891. doi: 10.3934/dcdsb.2009.11.875 |
[2] |
Jongmin Han, Chun-Hsiung Hsia. Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2431-2449. doi: 10.3934/dcdsb.2012.17.2431 |
[3] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Doo Seok Lee. Bifurcation and final patterns of a modified Swift-Hohenberg equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2543-2567. doi: 10.3934/dcdsb.2017087 |
[4] |
Huiqiang Jiang. Global existence of solutions of an activator-inhibitor system. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 737-751. doi: 10.3934/dcds.2006.14.737 |
[5] |
J. Burke, Edgar Knobloch. Multipulse states in the Swift-Hohenberg equation. Conference Publications, 2009, 2009 (Special) : 109-117. doi: 10.3934/proc.2009.2009.109 |
[6] |
Peng Gao. Averaging principles for the Swift-Hohenberg equation. Communications on Pure and Applied Analysis, 2020, 19 (1) : 293-310. doi: 10.3934/cpaa.2020016 |
[7] |
Xiaoli Wang, Guohong Zhang. Bifurcation analysis of a general activator-inhibitor model with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4459-4477. doi: 10.3934/dcdsb.2020295 |
[8] |
Ling-Jun Wang. The dynamics of small amplitude solutions of the Swift-Hohenberg equation on a large interval. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1129-1156. doi: 10.3934/cpaa.2012.11.1129 |
[9] |
Yanfeng Guo, Jinqiao Duan, Donglong Li. Approximation of random invariant manifolds for a stochastic Swift-Hohenberg equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1701-1715. doi: 10.3934/dcdss.2016071 |
[10] |
Yixia Shi, Maoan Han. Existence of generalized homoclinic solutions for a modified Swift-Hohenberg equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3189-3204. doi: 10.3934/dcdss.2020114 |
[11] |
Shengfu Deng. Periodic solutions and homoclinic solutions for a Swift-Hohenberg equation with dispersion. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1647-1662. doi: 10.3934/dcdss.2016068 |
[12] |
John Burke, Edgar Knobloch. Normal form for spatial dynamics in the Swift-Hohenberg equation. Conference Publications, 2007, 2007 (Special) : 170-180. doi: 10.3934/proc.2007.2007.170 |
[13] |
Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6069-6090. doi: 10.3934/dcdsb.2021003 |
[14] |
Marie Henry. Singular limit of an activator-inhibitor type model. Networks and Heterogeneous Media, 2012, 7 (4) : 781-803. doi: 10.3934/nhm.2012.7.781 |
[15] |
Masoud Yari. Attractor bifurcation and final patterns of the n-dimensional and generalized Swift-Hohenberg equations. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 441-456. doi: 10.3934/dcdsb.2007.7.441 |
[16] |
Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure and Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219 |
[17] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[18] |
Grzegorz Karch, Kanako Suzuki, Jacek Zienkiewicz. Finite-time blowup of solutions to some activator-inhibitor systems. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4997-5010. doi: 10.3934/dcds.2016016 |
[19] |
Shaohua Chen. Some properties for the solutions of a general activator-inhibitor model. Communications on Pure and Applied Analysis, 2006, 5 (4) : 919-928. doi: 10.3934/cpaa.2006.5.919 |
[20] |
Victor Ogesa Juma, Leif Dehmelt, Stéphanie Portet, Anotida Madzvamuse. A mathematical analysis of an activator-inhibitor Rho GTPase model. Journal of Computational Dynamics, 2022, 9 (2) : 133-158. doi: 10.3934/jcd.2021024 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]