• Previous Article
    The approximate fixed point property in Hausdorff topological vector spaces and applications
  • DCDS Home
  • This Issue
  • Next Article
    The spectrum and an index formula for the Neumann $p-$Laplacian and multiple solutions for problems with a crossing nonlinearity
July  2009, 25(2): 457-466. doi: 10.3934/dcds.2009.25.457

Lyapunov-Razumikhin method for differential equations with piecewise constant argument

1. 

Department of Mathematics, Middle East Technical University, 06531, Ankara, Turkey, Turkey

Received  June 2008 Revised  December 2008 Published  June 2009

At the first time, Razumikhin technique is applied for differential equations with piecewise constant argument of generalized type [1, 2]. Sufficient conditions are established for stability, uniform stability and uniform asymptotic stability of the trivial solution of such equations. We also provide appropriate examples to illustrate our results.
Citation: Marat Akhmet, Duygu Aruğaslan. Lyapunov-Razumikhin method for differential equations with piecewise constant argument. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 457-466. doi: 10.3934/dcds.2009.25.457
[1]

Lars Grüne, Peter E. Kloeden, Stefan Siegmund, Fabian R. Wirth. Lyapunov's second method for nonautonomous differential equations. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 375-403. doi: 10.3934/dcds.2007.18.375

[2]

Fuke Wu, Xuerong Mao, Peter E. Kloeden. Discrete Razumikhin-type technique and stability of the Euler--Maruyama method to stochastic functional differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (2) : 885-903. doi: 10.3934/dcds.2013.33.885

[3]

Marat Akhmet. Quasilinear retarded differential equations with functional dependence on piecewise constant argument. Communications on Pure & Applied Analysis, 2014, 13 (2) : 929-947. doi: 10.3934/cpaa.2014.13.929

[4]

Zuowei Cai, Jianhua Huang, Lihong Huang. Generalized Lyapunov-Razumikhin method for retarded differential inclusions: Applications to discontinuous neural networks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3591-3614. doi: 10.3934/dcdsb.2017181

[5]

Christopher M. Kellett. Classical converse theorems in Lyapunov's second method. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2333-2360. doi: 10.3934/dcdsb.2015.20.2333

[6]

F. M. G. Magpantay, A. R. Humphries. Generalised Lyapunov-Razumikhin techniques for scalar state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (1) : 85-104. doi: 10.3934/dcdss.2020005

[7]

Bi Ping, Maoan Han. Oscillation of second order difference equations with advanced argument. Conference Publications, 2003, 2003 (Special) : 108-112. doi: 10.3934/proc.2003.2003.108

[8]

Omar Saber Qasim, Ahmed Entesar, Waleed Al-Hayani. Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization. Numerical Algebra, Control & Optimization, 2021, 11 (4) : 633-644. doi: 10.3934/naco.2021001

[9]

Fuke Wu, George Yin, Le Yi Wang. Razumikhin-type theorems on moment exponential stability of functional differential equations involving two-time-scale Markovian switching. Mathematical Control & Related Fields, 2015, 5 (3) : 697-719. doi: 10.3934/mcrf.2015.5.697

[10]

Xiaofei He, X. H. Tang. Lyapunov-type inequalities for even order differential equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 465-473. doi: 10.3934/cpaa.2012.11.465

[11]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[12]

Nobuyuki Kato, Norio Kikuchi. Campanato-type boundary estimates for Rothe's scheme to parabolic partial differential systems with constant coefficients. Discrete & Continuous Dynamical Systems, 2007, 19 (4) : 737-760. doi: 10.3934/dcds.2007.19.737

[13]

Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad, Saed F. Mallak, Hussam Alrabaiah. Lyapunov type inequality in the frame of generalized Caputo derivatives. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2335-2355. doi: 10.3934/dcdss.2020212

[14]

Yulan Lu, Minghui Song, Mingzhu Liu. Convergence rate and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 695-717. doi: 10.3934/dcdsb.2018203

[15]

Ravi P. Agarwal, Abdullah Özbekler. Lyapunov type inequalities for $n$th order forced differential equations with mixed nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2281-2300. doi: 10.3934/cpaa.2016037

[16]

Ezzeddine Zahrouni. On the Lyapunov functions for the solutions of the generalized Burgers equation. Communications on Pure & Applied Analysis, 2003, 2 (3) : 391-410. doi: 10.3934/cpaa.2003.2.391

[17]

Kuo-Shou Chiu. Periodicity and stability analysis of impulsive neural network models with generalized piecewise constant delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021060

[18]

Felipe Linares, M. Scialom. On generalized Benjamin type equations. Discrete & Continuous Dynamical Systems, 2005, 12 (1) : 161-174. doi: 10.3934/dcds.2005.12.161

[19]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[20]

Willy Sarlet, Tom Mestdag. Compatibility aspects of the method of phase synchronization for decoupling linear second-order differential equations. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021019

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (32)

Other articles
by authors

[Back to Top]