September  2009, 25(3): 869-882. doi: 10.3934/dcds.2009.25.869

Acoustic limit of the Boltzmann equation: Classical solutions

1. 

Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York City, NY 10012

Received  January 2009 Revised  April 2009 Published  August 2009

We study the acoustic limit from the Boltzmann equation in the framework of classical solutions. For a solution $F_\varepsilon=\mu +\varepsilon \sqrt{\mu}f_\varepsilon$ to the rescaled Boltzmann equation in the acoustic time scaling

$\partial_t F_\varepsilon +\v$•$grad$x$F_\varepsilon =\frac{1}{\varepsilon} \Q(F_\varepsilon,F_\varepsilon)\,$

inside a periodic box $\mathbb{T}^3$, we establish the global-in-time uniform energy estimates of $f_\varepsilon$ in $\varepsilon$ and prove that $f_\varepsilon$ converges strongly to $f$ whose dynamics is governed by the acoustic system. The collision kernel $\Q$ includes hard-sphere interaction and inverse-power law with an angular cutoff.

Citation: Juhi Jang, Ning Jiang. Acoustic limit of the Boltzmann equation: Classical solutions. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 869-882. doi: 10.3934/dcds.2009.25.869
[1]

Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic and Related Models, 2010, 3 (4) : 685-728. doi: 10.3934/krm.2010.3.685

[2]

Vincent Giovangigli. Persistence of Boltzmann entropy in fluid models. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 95-114. doi: 10.3934/dcds.2009.24.95

[3]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks and Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

[4]

Ciro D'Apice, Rosanna Manzo. A fluid dynamic model for supply chains. Networks and Heterogeneous Media, 2006, 1 (3) : 379-398. doi: 10.3934/nhm.2006.1.379

[5]

Nuno J. Alves, Athanasios E. Tzavaras. The relaxation limit of bipolar fluid models. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 211-237. doi: 10.3934/dcds.2021113

[6]

Min Li, Xueke Pu, Shu Wang. Quasineutral limit for the compressible two-fluid Euler–Maxwell equations for well-prepared initial data. Electronic Research Archive, 2020, 28 (2) : 879-895. doi: 10.3934/era.2020046

[7]

Alberto Bressan, Marco Mazzola, Hongxu Wei. A dynamic model of the limit order book. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1015-1041. doi: 10.3934/dcdsb.2019206

[8]

Jérôme Renault. General limit value in dynamic programming. Journal of Dynamics and Games, 2014, 1 (3) : 471-484. doi: 10.3934/jdg.2014.1.471

[9]

Ciprian G. Gal, Maurizio Grasselli. Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1581-1610. doi: 10.3934/dcdsb.2013.18.1581

[10]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic and Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[11]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems and Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[12]

Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1357-1376. doi: 10.3934/cpaa.2015.14.1357

[13]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[14]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[15]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems and Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[16]

Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic and Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159

[17]

Marzia Bisi, Giampiero Spiga. A Boltzmann-type model for market economy and its continuous trading limit. Kinetic and Related Models, 2010, 3 (2) : 223-239. doi: 10.3934/krm.2010.3.223

[18]

François Golse. The Boltzmann-Grad limit for the Lorentz gas with a Poisson distribution of obstacles. Kinetic and Related Models, 2022, 15 (3) : 517-534. doi: 10.3934/krm.2022001

[19]

Angelo Morro. Nonlinear diffusion equations in fluid mixtures. Evolution Equations and Control Theory, 2016, 5 (3) : 431-448. doi: 10.3934/eect.2016012

[20]

Jin Ma, Xinyang Wang, Jianfeng Zhang. Dynamic equilibrium limit order book model and optimal execution problem. Mathematical Control and Related Fields, 2015, 5 (3) : 557-583. doi: 10.3934/mcrf.2015.5.557

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]