This issuePrevious ArticleEntropy and variational principles for holonomic probabilities of IFSNext ArticlePre-image variational principle for bundle random dynamical systems
We investigate the open Closing Lemma problem for vector fields on the $2$-dimensional torus. The local $C^r$ Closing Lemma is verified for smooth vector fields that are area-preserving at all saddle points.
Namely, given such a $C^r$ vector field $X$, $r\geq 4$, with a non-trivially recurrent point $p$, there exists a vector field $Y$ arbitrarily near to $X$ in the $C^r$ topology and obtained from $X$ by a twist perturbation, such that $p$ is a periodic point of $Y$.
The proof relies on a new result in $1$-dimensional dynamics on the non-existence of semi-wandering intervals of smooth order-preserving circle maps.