September  2010, 26(3): 1055-1072. doi: 10.3934/dcds.2010.26.1055

Concentration of solutions for a Paneitz type problem

1. 

School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, China

2. 

School of Mathematics and Statistics, South-Central University For Nationalities, Wuhan, 430074, China

Received  January 2009 Revised  October 2009 Published  December 2009

By variational methods, we construct infinitely many concentration solutions for a type of Paneitz problem under the condition that the Paneitz curvature has a sequence of strictly local maximum points moving to infinity.
Citation: Shuangjie Peng, Jing Zhou. Concentration of solutions for a Paneitz type problem. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 1055-1072. doi: 10.3934/dcds.2010.26.1055
[1]

Liping Wang, Dong Ye. Concentrating solutions for an anisotropic elliptic problem with large exponent. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3771-3797. doi: 10.3934/dcds.2015.35.3771

[2]

Imene Bendahou, Zied Khemiri, Fethi Mahmoudi. On spikes concentrating on lines for a Neumann superlinear Ambrosetti-Prodi type problem. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2367-2391. doi: 10.3934/dcds.2020118

[3]

Francis Akutsah, Akindele Adebayo Mebawondu, Hammed Anuoluwapo Abass, Ojen Kumar Narain. A self adaptive method for solving a class of bilevel variational inequalities with split variational inequality and composed fixed point problem constraints in Hilbert spaces. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021046

[4]

Long Wei. Concentrating phenomena in some elliptic Neumann problem: Asymptotic behavior of solutions. Communications on Pure & Applied Analysis, 2008, 7 (4) : 925-946. doi: 10.3934/cpaa.2008.7.925

[5]

Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773

[6]

Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006

[7]

Yi He, Gongbao Li. Concentrating soliton solutions for quasilinear Schrödinger equations involving critical Sobolev exponents. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 731-762. doi: 10.3934/dcds.2016.36.731

[8]

Chibueze Christian Okeke, Abdulmalik Usman Bello, Lateef Olakunle Jolaoso, Kingsley Chimuanya Ukandu. Inertial method for split null point problems with pseudomonotone variational inequality problems. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021037

[9]

Zhongyi Huang. Tailored finite point method for the interface problem. Networks & Heterogeneous Media, 2009, 4 (1) : 91-106. doi: 10.3934/nhm.2009.4.91

[10]

Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075

[11]

Yang Wang. The maximal number of interior peak solutions concentrating on hyperplanes for a singularly perturbed Neumann problem. Communications on Pure & Applied Analysis, 2011, 10 (2) : 731-744. doi: 10.3934/cpaa.2011.10.731

[12]

Yi He, Lu Lu, Wei Shuai. Concentrating ground-state solutions for a class of Schödinger-Poisson equations in $\mathbb{R}^3$ involving critical Sobolev exponents. Communications on Pure & Applied Analysis, 2016, 15 (1) : 103-125. doi: 10.3934/cpaa.2016.15.103

[13]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[14]

Hannelore Lisei, Radu Precup, Csaba Varga. A Schechter type critical point result in annular conical domains of a Banach space and applications. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3775-3789. doi: 10.3934/dcds.2016.36.3775

[15]

Yekini Shehu, Olaniyi Iyiola. On a modified extragradient method for variational inequality problem with application to industrial electricity production. Journal of Industrial & Management Optimization, 2019, 15 (1) : 319-342. doi: 10.3934/jimo.2018045

[16]

Jamilu Abubakar, Poom Kumam, Abor Isa Garba, Muhammad Sirajo Abdullahi, Abdulkarim Hassan Ibrahim, Wachirapong Jirakitpuwapat. An efficient iterative method for solving split variational inclusion problem with applications. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021160

[17]

Zhongliang Wang. Nonradial positive solutions for a biharmonic critical growth problem. Communications on Pure & Applied Analysis, 2012, 11 (2) : 517-545. doi: 10.3934/cpaa.2012.11.517

[18]

Mingqi Xiang, Binlin Zhang. A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 413-433. doi: 10.3934/dcdss.2019027

[19]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[20]

John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337-344. doi: 10.3934/proc.2005.2005.337

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]