-
Previous Article
Singular perturbation systems with stochastic forcing and the renormalization group method
- DCDS Home
- This Issue
-
Next Article
Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness
Boundary layers in smooth curvilinear domains: Parabolic problems
1. | The Institute for Scientific Computing and Applied Mathematics, Indiana University, 831 East Third Street, Bloomington, Indiana 47405, United States, United States |
2. | Institute for Scientific Computing and Applied Mathematics, Indiana University, Rawles Hall, 831 E. Third Street, Bloomington, IN 47405 |
[1] |
François Monard. Efficient tensor tomography in fan-beam coordinates. Ⅱ: Attenuated transforms. Inverse Problems and Imaging, 2018, 12 (2) : 433-460. doi: 10.3934/ipi.2018019 |
[2] |
Hongyun Peng, Zhi-An Wang, Kun Zhao, Changjiang Zhu. Boundary layers and stabilization of the singular Keller-Segel system. Kinetic and Related Models, 2018, 11 (5) : 1085-1123. doi: 10.3934/krm.2018042 |
[3] |
Bernard Brighi, Tewfik Sari. Blowing-up coordinates for a similarity boundary layer equation. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 929-948. doi: 10.3934/dcds.2005.12.929 |
[4] |
Umberto Biccari. Boundary controllability for a one-dimensional heat equation with a singular inverse-square potential. Mathematical Control and Related Fields, 2019, 9 (1) : 191-219. doi: 10.3934/mcrf.2019011 |
[5] |
Niclas Bernhoff. Boundary layers and shock profiles for the discrete Boltzmann equation for mixtures. Kinetic and Related Models, 2012, 5 (1) : 1-19. doi: 10.3934/krm.2012.5.1 |
[6] |
Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991 |
[7] |
Abdelhakim Belghazi, Ferroudja Smadhi, Nawel Zaidi, Ouahiba Zair. Carleman inequalities for the two-dimensional heat equation in singular domains. Mathematical Control and Related Fields, 2012, 2 (4) : 331-359. doi: 10.3934/mcrf.2012.2.331 |
[8] |
Christian Lax, Sebastian Walcher. Singular perturbations and scaling. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 1-29. doi: 10.3934/dcdsb.2019170 |
[9] |
R. Estrada. Boundary layers and spectral content asymptotics. Conference Publications, 1998, 1998 (Special) : 242-252. doi: 10.3934/proc.1998.1998.242 |
[10] |
Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315 |
[11] |
Suting Wei, Jun Yang. Clustering phase transition layers with boundary intersection for an inhomogeneous Allen-Cahn equation. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2575-2616. doi: 10.3934/cpaa.2020113 |
[12] |
Jing Wang, Lining Tong. Vanishing viscosity limit of 1d quasilinear parabolic equation with multiple boundary layers. Communications on Pure and Applied Analysis, 2019, 18 (2) : 887-910. doi: 10.3934/cpaa.2019043 |
[13] |
Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067 |
[14] |
Abdelaziz Khoutaibi, Lahcen Maniar. Null controllability for a heat equation with dynamic boundary conditions and drift terms. Evolution Equations and Control Theory, 2020, 9 (2) : 535-559. doi: 10.3934/eect.2020023 |
[15] |
Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147 |
[16] |
Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. The homogenization of the heat equation with mixed conditions on randomly subsets of the boundary. Conference Publications, 2013, 2013 (special) : 85-94. doi: 10.3934/proc.2013.2013.85 |
[17] |
Huicong Li. Effective boundary conditions of the heat equation on a body coated by functionally graded material. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1415-1430. doi: 10.3934/dcds.2016.36.1415 |
[18] |
Kazuhiro Ishige, Ryuichi Sato. Heat equation with a nonlinear boundary condition and uniformly local $L^r$ spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2627-2652. doi: 10.3934/dcds.2016.36.2627 |
[19] |
Víctor Hernández-Santamaría, Liliana Peralta. Some remarks on the Robust Stackelberg controllability for the heat equation with controls on the boundary. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 161-190. doi: 10.3934/dcdsb.2019177 |
[20] |
Abdelaziz Khoutaibi, Lahcen Maniar, Omar Oukdach. Null controllability for semilinear heat equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1525-1546. doi: 10.3934/dcdss.2022087 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]