October  2010, 26(4): 1291-1304. doi: 10.3934/dcds.2010.26.1291

Energetic variational approach in complex fluids: Maximum dissipation principle

1. 

Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis, MN 55455, United States

2. 

Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea

3. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802

Received  November 2008 Revised  April 2009 Published  December 2009

We discuss the general energetic variational approaches for hydrodynamic systems of complex fluids. In these energetic variational approaches, the least action principle (LAP) with action functional gives the Hamiltonian parts (conservative force) of the hydrodynamic systems, and the maximum/minimum dissipation principle (MDP), i.e., Onsager's principle, gives the dissipative parts (dissipative force) of the systems. When we combine the two systems derived from the two different principles, we obtain a whole coupled nonlinear system of equations satisfying the dissipative energy law. We will discuss the important roles of MDP in designing numerical method for computations of hydrodynamic systems in complex fluids. We will reformulate the dissipation in energy equation in terms of a rate in time by using an appropriate evolution equations, then the MDP is employed in the reformulated dissipation to obtain the dissipative force for the hydrodynamic systems. The systems are consistent with the Hamiltonian parts which are derived from LAP. This procedure allows the usage of lower order element (a continuous $C^0$ finite element) in numerical method to solve the system rather than high order elements, and at the same time preserves the dissipative energy law. We also verify this method through some numerical experiments in simulating the free interface motion in the mixture of two different fluids.
Citation: Yunkyong Hyon, Do Young Kwak, Chun Liu. Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1291-1304. doi: 10.3934/dcds.2010.26.1291
[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations and Control Theory, 2022, 11 (2) : 347-371. doi: 10.3934/eect.2020110

[2]

Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101

[3]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[4]

Shuguang Shao, Shu Wang, Wen-Qing Xu. Global regularity for a model of Navier-Stokes equations with logarithmic sub-dissipation. Kinetic and Related Models, 2018, 11 (1) : 179-190. doi: 10.3934/krm.2018009

[5]

Hongjie Dong, Dong Li. On a generalized maximum principle for a transport-diffusion model with $\log$-modulated fractional dissipation. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3437-3454. doi: 10.3934/dcds.2014.34.3437

[6]

Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651

[7]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control and Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[8]

Yanlin Liu, Ping Zhang. Remark on 3-D Navier-Stokes system with strong dissipation in one direction. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2765-2787. doi: 10.3934/cpaa.2020244

[9]

Yat Tin Chow, Ali Pakzad. On the zeroth law of turbulence for the stochastically forced Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021270

[10]

Nassif Ghoussoub. A variational principle for nonlinear transport equations. Communications on Pure and Applied Analysis, 2005, 4 (4) : 735-742. doi: 10.3934/cpaa.2005.4.735

[11]

Jie Jiang, Yinghua Li, Chun Liu. Two-phase incompressible flows with variable density: An energetic variational approach. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3243-3284. doi: 10.3934/dcds.2017138

[12]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[13]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[14]

Peter Anthony, Sergey Zelik. Infinite-energy solutions for the Navier-Stokes equations in a strip revisited. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1361-1393. doi: 10.3934/cpaa.2014.13.1361

[15]

José Luiz Boldrini, Luís H. de Miranda, Gabriela Planas. On singular Navier-Stokes equations and irreversible phase transitions. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2055-2078. doi: 10.3934/cpaa.2012.11.2055

[16]

M. Hassan Farshbaf-Shaker, Harald Garcke. Thermodynamically consistent higher order phase field Navier-Stokes models with applications to biomembranes. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 371-389. doi: 10.3934/dcdss.2011.4.371

[17]

Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397

[18]

Qiang Du, Manlin Li, Chun Liu. Analysis of a phase field Navier-Stokes vesicle-fluid interaction model. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 539-556. doi: 10.3934/dcdsb.2007.8.539

[19]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[20]

Xiao-Li Ding, Iván Area, Juan J. Nieto. Controlled singular evolution equations and Pontryagin type maximum principle with applications. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021059

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (217)
  • HTML views (0)
  • Cited by (57)

Other articles
by authors

[Back to Top]