-
Previous Article
Modeling and simulation of switchings in ferroelectric liquid crystals
- DCDS Home
- This Issue
-
Next Article
Chaos phenotypes discovered in fluids
Tropical atmospheric circulations: Dynamic stability and transitions
1. | Department of Mathematics, Sichuan University, Chengdu |
2. | Department of Mathematics, Indiana University, Bloomington, IN 47405 |
[1] |
Rodrigo Donizete Euzébio, Jaume Llibre. Periodic solutions of El Niño model through the Vallis differential system. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3455-3469. doi: 10.3934/dcds.2014.34.3455 |
[2] |
Botao ZHOU, Ying XU. How the “Best” CMIP5 Models Project Relations of Asian–Pacific Oscillation to Circulation Backgrounds Favorable for Tropical Cyclone Genesis over the Western North Pacific. Inverse Problems and Imaging, 2017, 11 (2) : 107-116. doi: 10.1007/s13351-017-6088-4 |
[3] |
Aurea Martínez, Francisco J. Fernández, Lino J. Alvarez-Vázquez. Water artificial circulation for eutrophication control. Mathematical Control and Related Fields, 2018, 8 (1) : 277-313. doi: 10.3934/mcrf.2018012 |
[4] |
Chao Xing, Ping Zhou, Hong Luo. The steady state solutions to thermohaline circulation equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3709-3722. doi: 10.3934/dcdsb.2016117 |
[5] |
Wu Chanti, Qiu Youzhen. A nonlinear empirical analysis on influence factor of circulation efficiency. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 929-940. doi: 10.3934/dcdss.2019062 |
[6] |
Hongjun Gao, Jinqiao Duan. Dynamics of the thermohaline circulation under wind forcing. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 205-219. doi: 10.3934/dcdsb.2002.2.205 |
[7] |
Jean-Pierre Eckmann, C. Eugene Wayne. Breathers as metastable states for the discrete NLS equation. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6091-6103. doi: 10.3934/dcds.2018136 |
[8] |
Yuri N. Fedorov, Luis C. García-Naranjo, Joris Vankerschaver. The motion of the 2D hydrodynamic Chaplygin sleigh in the presence of circulation. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4017-4040. doi: 10.3934/dcds.2013.33.4017 |
[9] |
Xiangjun Wang, Jianghui Wen, Jianping Li, Jinqiao Duan. Impact of $\alpha$-stable Lévy noise on the Stommel model for the thermohaline circulation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1575-1584. doi: 10.3934/dcdsb.2012.17.1575 |
[10] |
Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275 |
[11] |
Nikita Kalinin, Mikhail Shkolnikov. Introduction to tropical series and wave dynamic on them. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2827-2849. doi: 10.3934/dcds.2018120 |
[12] |
Bo You, Chengkui Zhong, Fang Li. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1213-1226. doi: 10.3934/dcdsb.2014.19.1213 |
[13] |
Michael Ghil. The wind-driven ocean circulation: Applying dynamical systems theory to a climate problem. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 189-228. doi: 10.3934/dcds.2017008 |
[14] |
Bo You, Chunxiang Zhao. Approximation of stationary statistical properties of the three dimensional autonomous planetary geostrophic equations of large-scale ocean circulation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3183-3198. doi: 10.3934/dcdsb.2020057 |
[15] |
Bo You. Well-posedness for the three dimensional stochastic planetary geostrophic equations of large-scale ocean circulation. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1579-1604. doi: 10.3934/dcds.2020332 |
[16] |
Meiling Jin, Yufu Ning, Fengming Liu, Yan Wang, Chunhua Gao. Uncertain KOL selection with advertising videos circulation and KOL selection diversification in advertising promotion. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021219 |
[17] |
S. Huff, G. Olumolode, N. Pennington, A. Peterson. Oscillation of an Euler-Cauchy dynamic equation. Conference Publications, 2003, 2003 (Special) : 423-431. doi: 10.3934/proc.2003.2003.423 |
[18] |
Xinliang An, Avy Soffer. Fermi's golden rule and $ H^1 $ scattering for nonlinear Klein-Gordon equations with metastable states. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 331-373. doi: 10.3934/dcds.2020013 |
[19] |
I-Liang Chern, Chun-Hsiung Hsia. Dynamic phase transition for binary systems in cylindrical geometry. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 173-188. doi: 10.3934/dcdsb.2011.16.173 |
[20] |
Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]