January  2010, 26(1): 151-196. doi: 10.3934/dcds.2010.26.151

The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy


Department of Mathematics, University of Missouri, Columbia, MO 65211, United States


Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim


Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, 1090 Wien, Austria, Austria

Received  August 2008 Revised  June 2009 Published  October 2009

We discuss the algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy with complex-valued initial data and prove unique solvability globally in time for a set of initial (Dirichlet divisor) data of full measure. To this effect we develop a new algorithm for constructing stationary complex-valued algebro-geometric solutions of the Ablowitz-Ladik hierarchy, which is of independent interest as it solves the inverse algebro-geometric spectral problem for general (non-unitary) Ablowitz-Ladik Lax operators, starting from a suitably chosen set of initial divisors of full measure. Combined with an appropriate first-order system of differential equations with respect to time (a substitute for the well-known Dubrovin-type equations), this yields the construction of global algebro-geometric solutions of the time-dependent Ablowitz-Ladik hierarchy.
   The treatment of general (non-unitary) Lax operators associated with general coefficients for the Ablowitz-Ladik hierarchy poses a variety of difficulties that, to the best of our knowledge, are successfully overcome here for the first time. Our approach is not confined to the Ablowitz-Ladik hierarchy but applies generally to $(1+1)$-dimensional completely integrable soliton equations of differential-difference type.
Citation: Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

Jerry L. Bona, Stéphane Vento, Fred B. Weissler. Singularity formation and blowup of complex-valued solutions of the modified KdV equation. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 4811-4840. doi: 10.3934/dcds.2013.33.4811


Gan Lu, Weiming Liu. Multiple complex-valued solutions for the nonlinear Schrödinger equations involving magnetic potentials. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1957-1975. doi: 10.3934/cpaa.2017096


Xin Li, Wenxian Shen, Chunyou Sun. Invariant measures for complex-valued dissipative dynamical systems and applications. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2427-2446. doi: 10.3934/dcdsb.2017124


Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310


Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557


Yu-Hao Liang, Wan-Rou Wu, Jonq Juang. Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 173-184. doi: 10.3934/dcdsb.2016.21.173


Chenxi Guo, Guillaume Bal. Reconstruction of complex-valued tensors in the Maxwell system from knowledge of internal magnetic fields. Inverse Problems & Imaging, 2014, 8 (4) : 1033-1051. doi: 10.3934/ipi.2014.8.1033


Yong Zhao, Shanshan Ren. Synchronization for a class of complex-valued memristor-based competitive neural networks(CMCNNs) with different time scales. Electronic Research Archive, 2021, 29 (5) : 3323-3340. doi: 10.3934/era.2021041


A. Berger, R.S. MacKay, Vassilis Rothos. A criterion for non-persistence of travelling breathers for perturbations of the Ablowitz--Ladik lattice. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 911-920. doi: 10.3934/dcdsb.2004.4.911


J. Colliander, A. D. Ionescu, C. E. Kenig, Gigliola Staffilani. Weighted low-regularity solutions of the KP-I initial-value problem. Discrete & Continuous Dynamical Systems, 2008, 20 (2) : 219-258. doi: 10.3934/dcds.2008.20.219


Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59


Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431


Davide Bellandi. On the initial value problem for a class of discrete velocity models. Mathematical Biosciences & Engineering, 2017, 14 (1) : 31-43. doi: 10.3934/mbe.2017003


Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212


Kai Yan, Zhaoyang Yin. On the initial value problem for higher dimensional Camassa-Holm equations. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 1327-1358. doi: 10.3934/dcds.2015.35.1327


Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709


Jun Zhou. Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28 (1) : 67-90. doi: 10.3934/era.2020005


Fei Guo, Bao-Feng Feng, Hongjun Gao, Yue Liu. On the initial-value problem to the Degasperis-Procesi equation with linear dispersion. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1269-1290. doi: 10.3934/dcds.2010.26.1269


Roberto Camassa. Characteristics and the initial value problem of a completely integrable shallow water equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 115-139. doi: 10.3934/dcdsb.2003.3.115


Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

2020 Impact Factor: 1.392


  • PDF downloads (71)
  • HTML views (0)
  • Cited by (3)

[Back to Top]