-
Previous Article
Random dispersal vs. non-local dispersal
- DCDS Home
- This Issue
-
Next Article
Nonlocal spatially inhomogeneous Hamilton-Jacobi equation with unusual free boundary
Long time behavior for the inhomogeneous PME in a medium with rapidly decaying density
1. | School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel |
2. | Departamento de Matemática Aplicada, E.T.S.I. de Caminos, Canales y Puertos, Universidad Politécnica de Madrid. 28040 Madrid |
3. | Departamento de Matemáticas and ICMAT. Universidad Autónoma de Madrid, Cantoblanco. 28049 Madrid, Spain |
$ \rho(x)\, \partial_t u= \Delta u^m $ in $Q$:$=\mathbb{R}^N\times\mathbb{R}_+$
$u(x, 0)=u_0 $ in $\mathbb{R}^N$
in dimensions $ N\ge 3$. We assume that $ m> 1 $ and $
\rho(x) $ is positive and bounded with $ \rho(x)\le
C|x|^{-\gamma} $ as $ |x|\to\infty$ with $\gamma>2$. The
initial data $u_0$ are nonnegative and have finite energy, i.e.,
$ \int \rho(x)u_0 dx< \infty$.
We show that in this case nontrivial solutions to the problem have
a long-time universal behavior in separate variables of the form
$u(x,t)$~$ t^{-1/(m-1)}W(x),$
where $V=W^m$ is the unique bounded, positive solution of the
sublinear elliptic equation $-\Delta V=c\,\rho(x)V^{1/m}$, in
$\mathbb{R}^N$ vanishing as $|x|\to\infty$; $c=1/(m-1)$. Such a
behavior of $u$ is typical of Dirichlet problems on bounded
domains with zero boundary data. It strongly departs from the
behavior in the case of slowly decaying densities, $\rho(x)$~$
|x|^{-\gamma}$ as $|x|\to\infty$ with 0 ≤ $ \gamma<2$, previously
studied by the authors.
If $\rho(x)$ has an intermediate decay, $\rho$~$ |x|^{-\gamma}$
as $|x|\to\infty$ with $2<\gamma<\gamma_2$:$=N-(N-2)/m$, solutions
still enjoy the finite propagation property (as in the case of
lower $\gamma$). In this range a more precise description may be
given at the diffusive scale in terms of source-type solutions
$U(x,t)$ of the related singular equation $|x|^{-\gamma}u_t=
\Delta u^m$. Thus in this range we have two different
space-time scales in which the behavior of solutions is
non-trivial. The corresponding results complement each other and
agree in the intermediate region where both apply, thus providing
an example of matched asymptotics.
[1] |
Mohammad Asadzadeh, Anders Brahme, Jiping Xin. Galerkin methods for primary ion transport in inhomogeneous media. Kinetic and Related Models, 2010, 3 (3) : 373-394. doi: 10.3934/krm.2010.3.373 |
[2] |
D. G. Aronson, N. V. Mantzaris, Hans Othmer. Wave propagation and blocking in inhomogeneous media. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 843-876. doi: 10.3934/dcds.2005.13.843 |
[3] |
Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure and Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279 |
[4] |
Mario Ohlberger, Ben Schweizer. Modelling of interfaces in unsaturated porous media. Conference Publications, 2007, 2007 (Special) : 794-803. doi: 10.3934/proc.2007.2007.794 |
[5] |
Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks and Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337 |
[6] |
Fioralba Cakoni, Anne Cossonnière, Houssem Haddar. Transmission eigenvalues for inhomogeneous media containing obstacles. Inverse Problems and Imaging, 2012, 6 (3) : 373-398. doi: 10.3934/ipi.2012.6.373 |
[7] |
María Anguiano, Renata Bunoiu. Homogenization of Bingham flow in thin porous media. Networks and Heterogeneous Media, 2020, 15 (1) : 87-110. doi: 10.3934/nhm.2020004 |
[8] |
Ioana Ciotir. Stochastic porous media equations with divergence Itô noise. Evolution Equations and Control Theory, 2020, 9 (2) : 375-398. doi: 10.3934/eect.2020010 |
[9] |
Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644 |
[10] |
Leda Bucciantini, Angiolo Farina, Antonio Fasano. Flows in porous media with erosion of the solid matrix. Networks and Heterogeneous Media, 2010, 5 (1) : 63-95. doi: 10.3934/nhm.2010.5.63 |
[11] |
Cedric Galusinski, Mazen Saad. Water-gas flow in porous media. Conference Publications, 2005, 2005 (Special) : 307-316. doi: 10.3934/proc.2005.2005.307 |
[12] |
Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123 |
[13] |
Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks and Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897 |
[14] |
Fioralba Cakoni, Shari Moskow, Scott Rome. The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions. Inverse Problems and Imaging, 2015, 9 (3) : 725-748. doi: 10.3934/ipi.2015.9.725 |
[15] |
Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009 |
[16] |
Martial Agueh, Guillaume Carlier, Reinhard Illner. Remarks on a class of kinetic models of granular media: Asymptotics and entropy bounds. Kinetic and Related Models, 2015, 8 (2) : 201-214. doi: 10.3934/krm.2015.8.201 |
[17] |
Youcef Amirat, Laurent Chupin, Rachid Touzani. Weak solutions to the equations of stationary magnetohydrodynamic flows in porous media. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2445-2464. doi: 10.3934/cpaa.2014.13.2445 |
[18] |
S. Bonafede, G. R. Cirmi, A.F. Tedeev. Finite speed of propagation for the porous media equation with lower order terms. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 305-314. doi: 10.3934/dcds.2000.6.305 |
[19] |
Cédric Galusinski, Mazen Saad. A nonlinear degenerate system modelling water-gas flows in porous media. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 281-308. doi: 10.3934/dcdsb.2008.9.281 |
[20] |
Ting Zhang. The modeling error of well treatment for unsteady flow in porous media. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2171-2185. doi: 10.3934/dcdsb.2015.20.2171 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]