April  2010, 26(2): 551-596. doi: 10.3934/dcds.2010.26.551

Random dispersal vs. non-local dispersal


Department of Mathematics, The Ohio State University, Columbus, OH 43210


Department of Mathematics, The Ohio State State University, Columbus, Ohio 43210


Department of Mathematics & Statistics, Auburn University, Auburn, AL 36849

Received  November 2008 Revised  July 2009 Published  October 2009

Random dispersal is essentially a local behavior which describes the movement of organisms between adjacent spatial locations. However, the movements and interactions of some organisms can occur between non-adjacent spatial locations. To address the question about which dispersal strategy can convey some competitive advantage, we consider a mathematical model consisting of one reaction-diffusion equation and one integro-differential equation, in which two competing species have the same population dynamics but different dispersal strategies: the movement of one species is purely by random walk while the other species adopts a non-local dispersal strategy. For spatially periodic and heterogeneous environments we show that (i) for fixed random dispersal rate, if the nonlocal dispersal distance is sufficiently small, then the non-local disperser can invade the random disperser but not vice versa; (ii) for fixed nonlocal dispersal distance, if the random dispersal rate becomes sufficiently small, then the random disperser can invade the nonlocal disperser but not vice versa. These results suggest that for spatially periodic heterogeneous environments, the competitive advantage may belong to the species with much lower effective rate of dispersal. This is in agreement with previous results for the evolution of random dispersal [9, 13] that the slower disperser has an advantage. Nevertheless, if random dispersal strategy with either zero Dirichlet or zero Neumann boundary condition is compared with non-local dispersal strategy with hostile surroundings, the species with much lower effective rate of dispersal may not have the competitive advantage. Numerical results will be presented to shed light on the global dynamics of the system for general values of non-local interaction distance and also to point to future research directions.
Citation: Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Random dispersal vs. non-local dispersal. Discrete & Continuous Dynamical Systems, 2010, 26 (2) : 551-596. doi: 10.3934/dcds.2010.26.551

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029


Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255


Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126


Chris Cosner. Reaction-diffusion-advection models for the effects and evolution of dispersal. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 1701-1745. doi: 10.3934/dcds.2014.34.1701


Nancy Azer, P. van den Driessche. Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences & Engineering, 2006, 3 (2) : 283-296. doi: 10.3934/mbe.2006.3.283


Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935


Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347


Kazuhisa Ichikawa, Mahemauti Rouzimaimaiti, Takashi Suzuki. Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 115-126. doi: 10.3934/dcdss.2012.5.115


Dingshi Li, Xuemin Wang. Regular random attractors for non-autonomous stochastic reaction-diffusion equations on thin domains. Electronic Research Archive, 2021, 29 (2) : 1969-1990. doi: 10.3934/era.2020100


Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087


Wan-Tong Li, Li Zhang, Guo-Bao Zhang. Invasion entire solutions in a competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems, 2015, 35 (4) : 1531-1560. doi: 10.3934/dcds.2015.35.1531


Song Liang, Yuan Lou. On the dependence of population size upon random dispersal rate. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2771-2788. doi: 10.3934/dcdsb.2012.17.2771


Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875


Yuncheng You. Random attractors and robustness for stochastic reversible reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 301-333. doi: 10.3934/dcds.2014.34.301


Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035


S.A. Gourley, Yang Kuang. Two-Species Competition with High Dispersal: The Winning Strategy. Mathematical Biosciences & Engineering, 2005, 2 (2) : 345-362. doi: 10.3934/mbe.2005.2.345


Georg Hetzer, Tung Nguyen, Wenxian Shen. Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1699-1722. doi: 10.3934/cpaa.2012.11.1699


Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203


Badr Saad T. Alkahtani, Ilknur Koca. A new numerical scheme applied on re-visited nonlinear model of predator-prey based on derivative with non-local and non-singular kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 429-442. doi: 10.3934/dcdss.2020024


Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems & Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036

2020 Impact Factor: 1.392


  • PDF downloads (220)
  • HTML views (0)
  • Cited by (105)

Other articles
by authors

[Back to Top]