-
Previous Article
Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth
- DCDS Home
- This Issue
-
Next Article
Age-dependent equations with non-linear diffusion
Boundary dynamics of a two-dimensional diffusive free boundary problem
1. | Mathematics and Computer Science Department, Goucher College, 1021 Dulaney Valley Road, Baltimore, MD, 21204, United States |
2. | Department of Mathematics, University of California, Irvine, CA 92697-3875 |
[1] |
Lars Diening, Michael Růžička. An existence result for non-Newtonian fluids in non-regular domains. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 255-268. doi: 10.3934/dcdss.2010.3.255 |
[2] |
Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036 |
[3] |
Wenming Hu, Huicheng Yin. Well-posedness of low regularity solutions to the second order strictly hyperbolic equations with non-Lipschitzian coefficients. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1891-1919. doi: 10.3934/cpaa.2019088 |
[4] |
Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635 |
[5] |
Birgit Jacob, Hafida Laasri. Well-posedness of infinite-dimensional non-autonomous passive boundary control systems. Evolution Equations and Control Theory, 2021, 10 (2) : 385-409. doi: 10.3934/eect.2020072 |
[6] |
Mircea Sofonea, Yi-bin Xiao. Tykhonov well-posedness of a viscoplastic contact problem†. Evolution Equations and Control Theory, 2020, 9 (4) : 1167-1185. doi: 10.3934/eect.2020048 |
[7] |
Yuri Trakhinin. On well-posedness of the plasma-vacuum interface problem: the case of non-elliptic interface symbol. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1371-1399. doi: 10.3934/cpaa.2016.15.1371 |
[8] |
Fujun Zhou, Shangbin Cui. Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 929-943. doi: 10.3934/dcds.2008.21.929 |
[9] |
Joachim Escher, Anca-Voichita Matioc. Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 573-596. doi: 10.3934/dcdsb.2011.15.573 |
[10] |
Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205 |
[11] |
Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems and Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307 |
[12] |
Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321 |
[13] |
Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903 |
[14] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[15] |
Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763 |
[16] |
Iñigo U. Erneta. Well-posedness for boundary value problems for coagulation-fragmentation equations. Kinetic and Related Models, 2020, 13 (4) : 815-835. doi: 10.3934/krm.2020028 |
[17] |
George Avalos, Pelin G. Geredeli, Justin T. Webster. Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1267-1295. doi: 10.3934/dcdsb.2018151 |
[18] |
Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control and Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61 |
[19] |
Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387 |
[20] |
Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]