
Previous Article
Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth
 DCDS Home
 This Issue

Next Article
Agedependent equations with nonlinear diffusion
Boundary dynamics of a twodimensional diffusive free boundary problem
1.  Mathematics and Computer Science Department, Goucher College, 1021 Dulaney Valley Road, Baltimore, MD, 21204, United States 
2.  Department of Mathematics, University of California, Irvine, CA 926973875 
[1] 
Lin Shen, Shu Wang, Yongxin Wang. The wellposedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691719. doi: 10.3934/era.2020036 
[2] 
Lars Diening, Michael Růžička. An existence result for nonNewtonian fluids in nonregular domains. Discrete & Continuous Dynamical Systems  S, 2010, 3 (2) : 255268. doi: 10.3934/dcdss.2010.3.255 
[3] 
Wenming Hu, Huicheng Yin. Wellposedness of low regularity solutions to the second order strictly hyperbolic equations with nonLipschitzian coefficients. Communications on Pure & Applied Analysis, 2019, 18 (4) : 18911919. doi: 10.3934/cpaa.2019088 
[4] 
Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local wellposedness in low regularity of the MKDV equation with periodic boundary condition. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 16351654. doi: 10.3934/dcds.2010.28.1635 
[5] 
Birgit Jacob, Hafida Laasri. Wellposedness of infinitedimensional nonautonomous passive boundary control systems. Evolution Equations & Control Theory, 2021, 10 (2) : 385409. doi: 10.3934/eect.2020072 
[6] 
Mircea Sofonea, Yibin Xiao. Tykhonov wellposedness of a viscoplastic contact problem^{†}. Evolution Equations & Control Theory, 2020, 9 (4) : 11671185. doi: 10.3934/eect.2020048 
[7] 
Yuri Trakhinin. On wellposedness of the plasmavacuum interface problem: the case of nonelliptic interface symbol. Communications on Pure & Applied Analysis, 2016, 15 (4) : 13711399. doi: 10.3934/cpaa.2016.15.1371 
[8] 
Fujun Zhou, Shangbin Cui. Wellposedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete & Continuous Dynamical Systems, 2008, 21 (3) : 929943. doi: 10.3934/dcds.2008.21.929 
[9] 
Joachim Escher, AncaVoichita Matioc. Wellposedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. Discrete & Continuous Dynamical Systems  B, 2011, 15 (3) : 573596. doi: 10.3934/dcdsb.2011.15.573 
[10] 
Boling Guo, Jun Wu. Wellposedness of the initialboundary value problem for the fourthorder nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021205 
[11] 
Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Wellposedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307340. doi: 10.3934/ipi.2013.7.307 
[12] 
Takamori Kato. Global wellposedness for the Kawahara equation with low regularity. Communications on Pure & Applied Analysis, 2013, 12 (3) : 13211339. doi: 10.3934/cpaa.2013.12.1321 
[13] 
Hyungjin Huh, Bora Moon. Low regularity wellposedness for GrossNeveu equations. Communications on Pure & Applied Analysis, 2015, 14 (5) : 19031913. doi: 10.3934/cpaa.2015.14.1903 
[14] 
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Wellposedness of some nonlinear stable driven SDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 849898. doi: 10.3934/dcds.2020302 
[15] 
Barbara Kaltenbacher, Irena Lasiecka. Wellposedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763773. doi: 10.3934/proc.2011.2011.763 
[16] 
Iñigo U. Erneta. Wellposedness for boundary value problems for coagulationfragmentation equations. Kinetic & Related Models, 2020, 13 (4) : 815835. doi: 10.3934/krm.2020028 
[17] 
George Avalos, Pelin G. Geredeli, Justin T. Webster. Semigroup wellposedness of a linearized, compressible fluid with an elastic boundary. Discrete & Continuous Dynamical Systems  B, 2018, 23 (3) : 12671295. doi: 10.3934/dcdsb.2018151 
[18] 
Ivonne Rivas, Muhammad Usman, BingYu Zhang. Global wellposedness and asymptotic behavior of a class of initialboundaryvalue problem of the KortewegDe Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 6181. doi: 10.3934/mcrf.2011.1.61 
[19] 
Zhaohui Huo, Boling Guo. The wellposedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems, 2005, 12 (3) : 387402. doi: 10.3934/dcds.2005.12.387 
[20] 
Hongmei Cao, HaoGuang Li, ChaoJiang Xu, Jiang Xu. Wellposedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829884. doi: 10.3934/krm.2019032 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]