-
Previous Article
Support of maximizing measures for typical $\mathcal{C}^0$ dynamics on compact manifolds
- DCDS Home
- This Issue
- Next Article
An inviscid dyadic model of turbulence: The global attractor
1. | Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 322 Science and Engineering Offices (M/C 249), 851 S. Morgan Street, Chicago, IL 60607-7045, United States |
2. | Department of Mathematics, University of Southern California, 3620 South Vermont Ave., KAP 108, Los Angeles, CA 90089, United States |
3. | Department of Mathematics, The University of Texas at Austin, 1 University Station, C1200 Austin, Texas 78712 |
[1] |
Tania Biswas, Sheetal Dharmatti. Control problems and invariant subspaces for sabra shell model of turbulence. Evolution Equations and Control Theory, 2018, 7 (3) : 417-445. doi: 10.3934/eect.2018021 |
[2] |
I. D. Chueshov, Iryna Ryzhkova. A global attractor for a fluid--plate interaction model. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1635-1656. doi: 10.3934/cpaa.2013.12.1635 |
[3] |
Rana D. Parshad, Juan B. Gutierrez. On the global attractor of the Trojan Y Chromosome model. Communications on Pure and Applied Analysis, 2011, 10 (1) : 339-359. doi: 10.3934/cpaa.2011.10.339 |
[4] |
Eleftherios Gkioulekas, Ka Kit Tung. On the double cascades of energy and enstrophy in two dimensional turbulence. Part 1. Theoretical formulation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 79-102. doi: 10.3934/dcdsb.2005.5.79 |
[5] |
Patrick Fischer, Charles-Henri Bruneau, Hamid Kellay. Multiresolution analysis for 2D turbulence. part 2: A physical interpretation. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 717-734. doi: 10.3934/dcdsb.2007.7.717 |
[6] |
Marcel Lesieur. Two-point closure based large-eddy simulations in turbulence. Part 2: Inhomogeneous cases. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 227-241. doi: 10.3934/dcds.2010.28.227 |
[7] |
Patrick Fischer. Multiresolution analysis for 2D turbulence. Part 1: Wavelets vs cosine packets, a comparative study. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 659-686. doi: 10.3934/dcdsb.2005.5.659 |
[8] |
Eleftherios Gkioulekas, Ka Kit Tung. On the double cascades of energy and enstrophy in two dimensional turbulence. Part 2. Approach to the KLB limit and interpretation of experimental evidence. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 103-124. doi: 10.3934/dcdsb.2005.5.103 |
[9] |
W. Layton, R. Lewandowski. On a well-posed turbulence model. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 111-128. doi: 10.3934/dcdsb.2006.6.111 |
[10] |
Luca Bisconti, Davide Catania. Global well-posedness of the two-dimensional horizontally filtered simplified Bardina turbulence model on a strip-like region. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1861-1881. doi: 10.3934/cpaa.2017090 |
[11] |
Peter R. Kramer, Joseph A. Biello, Yuri Lvov. Application of weak turbulence theory to FPU model. Conference Publications, 2003, 2003 (Special) : 482-491. doi: 10.3934/proc.2003.2003.482 |
[12] |
Inger Daniels, Catherine Lebiedzik. Existence and uniqueness of a structural acoustic model involving a nonlinear shell. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 243-252. doi: 10.3934/dcdss.2008.1.243 |
[13] |
Sylvia Anicic. Existence theorem for a first-order Koiter nonlinear shell model. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1535-1545. doi: 10.3934/dcdss.2019106 |
[14] |
Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824 |
[15] |
T. Gallouët, J.-C. Latché. Compactness of discrete approximate solutions to parabolic PDEs - Application to a turbulence model. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2371-2391. doi: 10.3934/cpaa.2012.11.2371 |
[16] |
T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure and Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415 |
[17] |
Hannes Eberlein, Michael Růžička. Global weak solutions for an newtonian fluid interacting with a Koiter type shell under natural boundary conditions. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 4093-4140. doi: 10.3934/dcdss.2020419 |
[18] |
Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215 |
[19] |
Yirong Jiang, Nanjing Huang, Zhouchao Wei. Existence of a global attractor for fractional differential hemivariational inequalities. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1193-1212. doi: 10.3934/dcdsb.2019216 |
[20] |
Hiroshi Matano, Ken-Ichi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 1-24. doi: 10.3934/dcds.1997.3.1 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]