-
Previous Article
Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers
- DCDS Home
- This Issue
-
Next Article
Hyperbolicity of $C^1$-stably expansive homoclinic classes
Rotating modes in the Frenkel-Kontorova model with periodic interaction potential
1. | Department of Mathematics, Suzhou University, Suzhou, 215006, China |
[1] |
Wen-Long Li, Xiaojun Cui. Multitransition solutions for a generalized Frenkel-Kontorova model. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6135-6158. doi: 10.3934/dcds.2020273 |
[2] |
Wen-Xin Qin. Modulation of uniform motion in diatomic Frenkel-Kontorova model. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3773-3788. doi: 10.3934/dcds.2014.34.3773 |
[3] |
Jianxing Du, Xifeng Su. On the existence of solutions for the Frenkel-Kontorova models on quasi-crystals. Electronic Research Archive, 2021, 29 (6) : 4177-4198. doi: 10.3934/era.2021078 |
[4] |
Abdelaaziz Sbai, Youssef El Hadfi, Mohammed Srati, Noureddine Aboutabit. Existence of solution for Kirchhoff type problem in Orlicz-Sobolev spaces Via Leray-Schauder's nonlinear alternative. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 213-227. doi: 10.3934/dcdss.2021015 |
[5] |
Zalman Balanov, Meymanat Farzamirad, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree. part II: Symmetric Hopf bifurcations of functional differential equations. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 923-960. doi: 10.3934/dcds.2006.16.923 |
[6] |
Paul Deuring, Stanislav Kračmar, Šárka Nečasová. Linearized stationary incompressible flow around rotating and translating bodies -- Leray solutions. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 967-979. doi: 10.3934/dcdss.2014.7.967 |
[7] |
Shaowen Shi, Weinian Zhang. Bifurcations in an economic model with fractional degree. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4407-4431. doi: 10.3934/dcdsb.2020293 |
[8] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[9] |
Jishan Fan, Tohru Ozawa. Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha$-MHD model. Kinetic and Related Models, 2009, 2 (2) : 293-305. doi: 10.3934/krm.2009.2.293 |
[10] |
Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481 |
[11] |
Elder J. Villamizar-Roa, Elva E. Ortega-Torres. On a generalized Boussinesq model around a rotating obstacle: Existence of strong solutions. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 825-847. doi: 10.3934/dcdsb.2011.15.825 |
[12] |
Jong-Shenq Guo, Hirokazu Ninomiya, Chin-Chin Wu. Existence of a rotating wave pattern in a disk for a wave front interaction model. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1049-1063. doi: 10.3934/cpaa.2013.12.1049 |
[13] |
Zhikun She, Xin Jiang. Threshold dynamics of a general delayed within-host viral infection model with humoral immunity and two modes of virus transmission. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3835-3861. doi: 10.3934/dcdsb.2020259 |
[14] |
Giuseppe Gaeta, Sebastian Walcher. Higher order normal modes. Journal of Geometric Mechanics, 2020, 12 (3) : 421-434. doi: 10.3934/jgm.2020026 |
[15] |
Carlo Alabiso, Mario Casartelli. Quasi Normal modes in stochastic domains. Conference Publications, 2003, 2003 (Special) : 21-29. doi: 10.3934/proc.2003.2003.21 |
[16] |
Stephen P. Shipman, Darko Volkov. Existence of guided modes on periodic slabs. Conference Publications, 2005, 2005 (Special) : 784-791. doi: 10.3934/proc.2005.2005.784 |
[17] |
Dan Endres, Martin Kummer. Nonlinear normal modes for the isosceles DST. Conference Publications, 1998, 1998 (Special) : 231-241. doi: 10.3934/proc.1998.1998.231 |
[18] |
Christopher M. Kribs-Zaleta. Alternative transmission modes for Trypanosoma cruzi . Mathematical Biosciences & Engineering, 2010, 7 (3) : 657-673. doi: 10.3934/mbe.2010.7.657 |
[19] |
Peter Constantin. Transport in rotating fluids. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 165-176. doi: 10.3934/dcds.2004.10.165 |
[20] |
D. Bresch, B. Desjardins, D. Gérard-Varet. Rotating fluids in a cylinder. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 47-82. doi: 10.3934/dcds.2004.11.47 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]