\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Homoclinic orbits for superlinear Hamiltonian systems without Ambrosetti-Rabinowitz growth condition

Abstract Related Papers Cited by
  • In this paper we prove the existence of homoclinic orbits for the first order non-autonomous Hamiltonian system

    $\dot{z}=\mathcal {J}H_{z}(t,z),$

    where $H(t,z)$ depends periodically on $t$. We establish some existence results of the homoclinic orbits for weak superlinear cases. To this purpose, we apply a new linking theorem to provide bounded Palais-Samle sequences.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(77) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return