February  2010, 27(1): 337-355. doi: 10.3934/dcds.2010.27.337

Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems

1. 

School of Mathematics and LPMC, Nankai University, Tianjin 300071, China

Received  March 2009 Revised  November 2009 Published  February 2010

In this paper, we consider the minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems. We prove that if the Hamiltonian function $H\in C^2(\R^{2n}, \R)$ is super-quadratic and convex, for every number $\tau>0$, there exists at least one $\tau$-periodic brake orbit $(\tau,x)$ with minimal period $\tau$ or $\tau/2$ provided $H(Nx)=H(x)$.
Citation: Chungen Liu. Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2010, 27 (1) : 337-355. doi: 10.3934/dcds.2010.27.337
[1]

Juhong Kuang, Weiyi Chen, Zhiming Guo. Periodic solutions with prescribed minimal period for second order even Hamiltonian systems. Communications on Pure & Applied Analysis, 2022, 21 (1) : 47-59. doi: 10.3934/cpaa.2021166

[2]

Duanzhi Zhang. Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 2227-2272. doi: 10.3934/dcds.2015.35.2227

[3]

Zhiping Fan, Duanzhi Zhang. Minimal period solutions in asymptotically linear Hamiltonian system with symmetries. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2095-2124. doi: 10.3934/dcds.2020354

[4]

Yavdat Il'yasov, Nadir Sari. Solutions of minimal period for a Hamiltonian system with a changing sign potential. Communications on Pure & Applied Analysis, 2005, 4 (1) : 175-185. doi: 10.3934/cpaa.2005.4.175

[5]

K. Tintarev. Critical values and minimal periods for autonomous Hamiltonian systems. Discrete & Continuous Dynamical Systems, 1995, 1 (3) : 389-400. doi: 10.3934/dcds.1995.1.389

[6]

Roman Šimon Hilscher. On general Sturmian theory for abnormal linear Hamiltonian systems. Conference Publications, 2011, 2011 (Special) : 684-691. doi: 10.3934/proc.2011.2011.684

[7]

Kung-Ching Chang, Zhi-Qiang Wang, Tan Zhang. On a new index theory and non semi-trivial solutions for elliptic systems. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 809-826. doi: 10.3934/dcds.2010.28.809

[8]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[9]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[10]

Ely Kerman. On primes and period growth for Hamiltonian diffeomorphisms. Journal of Modern Dynamics, 2012, 6 (1) : 41-58. doi: 10.3934/jmd.2012.6.41

[11]

Kaizhi Wang, Lin Wang, Jun Yan. Aubry-Mather theory for contact Hamiltonian systems II. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021128

[12]

D. Novikov and S. Yakovenko. Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems. Electronic Research Announcements, 1999, 5: 55-65.

[13]

Marian Gidea, Rafael De La Llave. Topological methods in the instability problem of Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2006, 14 (2) : 295-328. doi: 10.3934/dcds.2006.14.295

[14]

Rehana Naz, Fazal M Mahomed, Azam Chaudhry. First integrals of Hamiltonian systems: The inverse problem. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2829-2840. doi: 10.3934/dcdss.2020121

[15]

Dawei Yang, Shaobo Gan, Lan Wen. Minimal non-hyperbolicity and index-completeness. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1349-1366. doi: 10.3934/dcds.2009.25.1349

[16]

Chungen Liu, Xiaofei Zhang. Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1559-1574. doi: 10.3934/dcds.2017064

[17]

Tien-Tsan Shieh. From gradient theory of phase transition to a generalized minimal interface problem with a contact energy. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2729-2755. doi: 10.3934/dcds.2016.36.2729

[18]

Vladimir V. Chepyzhov, Monica Conti, Vittorino Pata. A minimal approach to the theory of global attractors. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2079-2088. doi: 10.3934/dcds.2012.32.2079

[19]

Todd Young. A result in global bifurcation theory using the Conley index. Discrete & Continuous Dynamical Systems, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387

[20]

Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]