-
Previous Article
An indefinite nonlinear diffusion problem in population genetics, II: Stability and multiplicity
- DCDS Home
- This Issue
-
Next Article
Rigidity of real-analytic actions of $SL(n,\Z)$ on $\T^n$: A case of realization of Zimmer program
An indefinite nonlinear diffusion problem in population genetics, I: Existence and limiting profiles
1. | Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477 |
2. | School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455 |
3. | School of Mathematics, University of Minnesota, Minneapolis, MN 55455, United States |
$ d\Delta u+g(x)u^{2}(1-u)=0 \ $
in Ω ,
$ 0\leq u\leq 1 $in Ω and $ \frac{\partial u}{\partial\nu}=0 $ on ∂Ω,
where $\Delta$ is the Laplace operator, $\Omega$ is a bounded
smooth domain in $\mathbb{R}^{N}$ with $\nu$ as its unit outward
normal on the boundary $\partial\Omega$, and $g$ changes sign in $\Omega$. This equation models the "complete dominance" case in population genetics of two alleles. We show that the
diffusion rate $d$ and the integral $\int_{\Omega}g\ \d x$ play
important roles for the existence of stable nontrivial solutions, and the sign of $g(x)$ determines the
limiting profile of solutions as $d$ tends to $0$. In particular, a conjecture of Nagylaki and Lou has been largely resolved.
Our results and methods cover a much wider class of nonlinearities than $u^{2}(1-u)$, and similar results have been
obtained for Dirichlet and Robin boundary value problems as well.
[1] |
Gaocheng Yue. Limiting behavior of trajectory attractors of perturbed reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5673-5694. doi: 10.3934/dcdsb.2019101 |
[2] |
Dingshi Li, Kening Lu, Bixiang Wang, Xiaohu Wang. Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 187-208. doi: 10.3934/dcds.2018009 |
[3] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[4] |
Peng Gao. Limiting dynamics for stochastic nonclassical diffusion equations. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021288 |
[5] |
Ji Shu, Linyan Li, Xin Huang, Jian Zhang. Limiting behavior of fractional stochastic integro-Differential equations on unbounded domains. Mathematical Control and Related Fields, 2021, 11 (4) : 715-737. doi: 10.3934/mcrf.2020044 |
[6] |
Begoña Barrios, Leandro Del Pezzo, Jorge García-Melián, Alexander Quaas. A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5731-5746. doi: 10.3934/dcds.2017248 |
[7] |
Pablo Amster, Manuel Zamora. Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4819-4835. doi: 10.3934/dcds.2018211 |
[8] |
Caihong Chang, Qiangchang Ju, Zhengce Zhang. Asymptotic behavior of global solutions to a class of heat equations with gradient nonlinearity. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5991-6014. doi: 10.3934/dcds.2020256 |
[9] |
Dingshi Li, Kening Lu, Bixiang Wang, Xiaohu Wang. Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3717-3747. doi: 10.3934/dcds.2019151 |
[10] |
Yuki Kaneko, Hiroshi Matsuzawa, Yoshio Yamada. A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions I : Classification of asymptotic behavior. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2719-2745. doi: 10.3934/dcds.2021209 |
[11] |
Mi-Ho Giga, Yoshikazu Giga, Takeshi Ohtsuka, Noriaki Umeda. On behavior of signs for the heat equation and a diffusion method for data separation. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2277-2296. doi: 10.3934/cpaa.2013.12.2277 |
[12] |
Wenxiong Chen, Congming Li, Jiuyi Zhu. Fractional equations with indefinite nonlinearities. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1257-1268. doi: 10.3934/dcds.2019054 |
[13] |
Juliette Bouhours, Grégroie Nadin. A variational approach to reaction-diffusion equations with forced speed in dimension 1. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1843-1872. doi: 10.3934/dcds.2015.35.1843 |
[14] |
Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6311-6337. doi: 10.3934/dcdsb.2021020 |
[15] |
Yusen Lin, Dingshi Li. Limiting behavior of invariant measures of highly nonlinear stochastic retarded lattice systems. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022054 |
[16] |
Yuchi Qiu, Weitao Chen, Qing Nie. A hybrid method for stiff reaction–diffusion equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6387-6417. doi: 10.3934/dcdsb.2019144 |
[17] |
Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic and Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59 |
[18] |
Yuxia Guo, Shaolong Peng. Monotonicity and nonexistence of positive solutions for pseudo-relativistic equation with indefinite nonlinearity. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1637-1648. doi: 10.3934/cpaa.2022037 |
[19] |
Henrik Garde, Stratos Staboulis. The regularized monotonicity method: Detecting irregular indefinite inclusions. Inverse Problems and Imaging, 2019, 13 (1) : 93-116. doi: 10.3934/ipi.2019006 |
[20] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]