July  2010, 28(3): 1165-1178. doi: 10.3934/dcds.2010.28.1165

On the size of the Navier - Stokes singular set


International Institute of the Earthquakes Prediction, Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow 117997, Russian Federation


Department of Mathematics & Statistics, McMaster University, Hamilton Ontario L8S 4K1, Canada

Received  April 2010 Published  April 2010

A beautiful and influential subject in the study of the question of smoothness of solutions for the Navier - Stokes equations in three dimensions is the theory of partial regularity. A major paper on this topic is Caffarelli, Kohn & Nirenberg [5](1982) which gives an upper bound on the size of the singular set $S(u)$ of a suitable weak solution $u$. In the present paper we describe a complementary lower bound. More precisely, we study the situation in which a weak solution fails to be continuous in the strong $L^2$ topology at some singular time $t=T$. We identify a closed set in space on which the $L^2$ norm concentrates at this time $T$, and we study microlocal properties of the Fourier transform of the solution in the cotangent bundle T * (R 3) above this set. Our main result is that $L^2$ concentration can only occur on subsets of T * (R 3) which are sufficiently large. An element of the proof is a new global estimate on weak solutions of the Navier - Stokes equations which have sufficiently smooth initial data.
Citation: Maxim Arnold, Walter Craig. On the size of the Navier - Stokes singular set. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1165-1178. doi: 10.3934/dcds.2010.28.1165

Sébastien Guisset. Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and Navier-Stokes equations. Kinetic and Related Models, 2020, 13 (4) : 739-758. doi: 10.3934/krm.2020025


Luis A. Caffarelli, Alexis F. Vasseur. The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics. Discrete and Continuous Dynamical Systems - S, 2010, 3 (3) : 409-427. doi: 10.3934/dcdss.2010.3.409


Philipp Reiter. Regularity theory for the Möbius energy. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1463-1471. doi: 10.3934/cpaa.2010.9.1463


Eduard Feireisl, Šárka Nečasová, Reimund Rautmann, Werner Varnhorn. New developments in mathematical theory of fluid mechanics. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : i-ii. doi: 10.3934/dcdss.2014.7.5i


Huilian Jia, Lihe Wang, Fengping Yao, Shulin Zhou. Regularity theory in Orlicz spaces for the poisson and heat equations. Communications on Pure and Applied Analysis, 2008, 7 (2) : 407-416. doi: 10.3934/cpaa.2008.7.407


Sun-Sig Byun, Hongbin Chen, Mijoung Kim, Lihe Wang. Lp regularity theory for linear elliptic systems. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 121-134. doi: 10.3934/dcds.2007.18.121


Simone Farinelli. Geometric arbitrage theory and market dynamics. Journal of Geometric Mechanics, 2015, 7 (4) : 431-471. doi: 10.3934/jgm.2015.7.431


Alain Miranville, Mazen Saad, Raafat Talhouk. Preface: Workshop in fluid mechanics and population dynamics. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : i-i. doi: 10.3934/dcdss.2014.7.2i


A. V. Borisov, I.S. Mamaev, S. M. Ramodanov. Dynamics of two interacting circular cylinders in perfect fluid. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 235-253. doi: 10.3934/dcds.2007.19.235


Jeffrey J. Early, Juha Pohjanpelto, Roger M. Samelson. Group foliation of equations in geophysical fluid dynamics. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1571-1586. doi: 10.3934/dcds.2010.27.1571


Francesca Bucci, Irena Lasiecka. Regularity of boundary traces for a fluid-solid interaction model. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 505-521. doi: 10.3934/dcdss.2011.4.505


Zhi-Ying Sun, Lan Huang, Xin-Guang Yang. Exponential stability and regularity of compressible viscous micropolar fluid with cylinder symmetry. Electronic Research Archive, 2020, 28 (2) : 861-878. doi: 10.3934/era.2020045


Chun Liu. Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 591-608. doi: 10.3934/dcds.2000.6.591


Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310


Jerrold E. Marsden, Alexey Tret'yakov. Factor analysis of nonlinear mappings: p-regularity theory. Communications on Pure and Applied Analysis, 2003, 2 (4) : 425-445. doi: 10.3934/cpaa.2003.2.425


Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437


Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72


M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer. On algebraic graph theory and the dynamics of innovation networks. Networks and Heterogeneous Media, 2008, 3 (2) : 201-219. doi: 10.3934/nhm.2008.3.201


Chun-Hao Teng, I-Liang Chern, Ming-Chih Lai. Simulating binary fluid-surfactant dynamics by a phase field model. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1289-1307. doi: 10.3934/dcdsb.2012.17.1289


Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029

2021 Impact Factor: 1.588


  • PDF downloads (84)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]