July  2010, 28(3): 1237-1272. doi: 10.3934/dcds.2010.28.1237

Mean field equations of Liouville type with singular data: Sharper estimates

1. 

Department of Mathematics, National Center for Theoretical Sciences, National Taiwan University, Taipei, 106, Taiwan, Taiwan

Received  April 2010 Published  April 2010

In this and the subsequent paper, we are interested in the following nonlinear equation:

$\Delta_g v+\rho(\frac{h^* e^v}{\int_M h^* vd\mu(x)}-1)= 4\pi\sum_{j=1}^N\alpha_j(\delta_{q_i}-1)\quad\text{in }M,$(0.1)

where $(M,g)$ is a Riemann surface with its area $|M|=1$; or

$\Delta v+\rho\frac{h^*e^v}{\int_\Omega h^* e^vdx}=4\pi\sum_{j=1}^N\alpha_j \delta_{q_j}\quad\text{in }\Omega, $ (0.2)

where $\Omega$ is a bounded smooth domain in $ R^2$. Here, $\rho, \alpha_j$ are positive constants, $\delta_q$ is the Dirac measure at $q$, and both $h^*$'s are positive smooth functions. In this paper, we prove a sharp estimate for a sequence of blowing up solutions $u_k$ to (0.1) or (0.2) with $\rho_k\rightarrow\rho*. Among other things, we show that for equation (0.1),

$\rho_k-\rho_*=\sum_{j=1}^\tau d_j( \Delta \log h^*(p_j)+\rho_*-N^*-2K(p_j)+o(1) )e^{-\frac{\lambda_k}{1+\alpha_j}}, $ (0.3)

and for equation (0.2),

$ \rho_k-\rho_*=\sum_{j=1}^\tau d_j(\Delta \log h^*(p_j)+o(1))e^{-\frac{\lambda_k}{1+\alpha_j}},$ (0.4)

where $\lambda_k\rightarrow+\infty$ and $d_j$ is a constant depending on $p_j$, a blow up point of $u_k$. See section 1 for more precise description. These estimates play an important role when the degree counting formulas are derived. The subsequent paper [19] will complete the proof of computing the degree counting formula.

Citation: Chiun-Chuan Chen, Chang-Shou Lin. Mean field equations of Liouville type with singular data: Sharper estimates. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1237-1272. doi: 10.3934/dcds.2010.28.1237
[1]

Futoshi Takahashi. Morse indices and the number of blow up points of blowing-up solutions for a Liouville equation with singular data. Conference Publications, 2013, 2013 (special) : 729-736. doi: 10.3934/proc.2013.2013.729

[2]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[3]

Hyungjin Huh. Towards the Chern-Simons-Higgs equation with finite energy. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1145-1159. doi: 10.3934/dcds.2011.30.1145

[4]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[5]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[6]

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809

[7]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[8]

Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure and Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697

[9]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[10]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[11]

Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147

[12]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[13]

Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617

[14]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[15]

Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069

[16]

István Győri, Yukihiko Nakata, Gergely Röst. Unbounded and blow-up solutions for a delay logistic equation with positive feedback. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2845-2854. doi: 10.3934/cpaa.2018134

[17]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[18]

Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure and Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183

[19]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[20]

Donghao Li, Hongwei Zhang, Shuo Liu, Qingiyng Hu. Blow-up of solutions to a viscoelastic wave equation with nonlocal damping. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022009

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (159)
  • HTML views (0)
  • Cited by (48)

Other articles
by authors

[Back to Top]