-
Previous Article
Optimal three-ball inequalities and quantitative uniqueness for the Stokes system
- DCDS Home
- This Issue
-
Next Article
Vanishing viscosity for fractal sets
Mean field equations of Liouville type with singular data: Sharper estimates
1. | Department of Mathematics, National Center for Theoretical Sciences, National Taiwan University, Taipei, 106, Taiwan, Taiwan |
$\Delta_g v+\rho(\frac{h^* e^v}{\int_M h^* vd\mu(x)}-1)= 4\pi\sum_{j=1}^N\alpha_j(\delta_{q_i}-1)\quad\text{in }M,$(0.1)
where $(M,g)$ is a Riemann surface with its area $|M|=1$; or
$\Delta v+\rho\frac{h^*e^v}{\int_\Omega h^* e^vdx}=4\pi\sum_{j=1}^N\alpha_j \delta_{q_j}\quad\text{in }\Omega, $ (0.2)
where $\Omega$ is a bounded smooth domain in $ R^2$. Here, $\rho, \alpha_j$ are positive constants, $\delta_q$ is the Dirac measure at $q$, and both $h^*$'s are positive smooth functions. In this paper, we prove a sharp estimate for a sequence of blowing up solutions $u_k$ to (0.1) or (0.2) with $\rho_k\rightarrow\rho*. Among other things, we show that for equation (0.1),
$\rho_k-\rho_*=\sum_{j=1}^\tau d_j( \Delta \log h^*(p_j)+\rho_*-N^*-2K(p_j)+o(1) )e^{-\frac{\lambda_k}{1+\alpha_j}}, $ (0.3)
and for equation (0.2),
$ \rho_k-\rho_*=\sum_{j=1}^\tau d_j(\Delta \log h^*(p_j)+o(1))e^{-\frac{\lambda_k}{1+\alpha_j}},$ (0.4)
where $\lambda_k\rightarrow+\infty$ and $d_j$ is a constant depending on $p_j$, a blow up point of $u_k$. See section 1 for more precise description. These estimates play an important role when the degree counting formulas are derived. The subsequent paper [19] will complete the proof of computing the degree counting formula.
[1] |
Futoshi Takahashi. Morse indices and the number of blow up points of blowing-up solutions for a Liouville equation with singular data. Conference Publications, 2013, 2013 (special) : 729-736. doi: 10.3934/proc.2013.2013.729 |
[2] |
Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1 |
[3] |
Hyungjin Huh. Towards the Chern-Simons-Higgs equation with finite energy. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1145-1159. doi: 10.3934/dcds.2011.30.1145 |
[4] |
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 |
[5] |
Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225 |
[6] |
Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809 |
[7] |
Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042 |
[8] |
Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure and Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697 |
[9] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[10] |
Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089 |
[11] |
Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147 |
[12] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[13] |
Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617 |
[14] |
Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639 |
[15] |
Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069 |
[16] |
István Győri, Yukihiko Nakata, Gergely Röst. Unbounded and blow-up solutions for a delay logistic equation with positive feedback. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2845-2854. doi: 10.3934/cpaa.2018134 |
[17] |
Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072 |
[18] |
Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure and Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183 |
[19] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[20] |
Donghao Li, Hongwei Zhang, Shuo Liu, Qingiyng Hu. Blow-up of solutions to a viscoelastic wave equation with nonlocal damping. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022009 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]